diff --git a/lightrag/llm/azure_openai.py b/lightrag/llm/azure_openai.py
index 98437ca8..cb8d68df 100644
--- a/lightrag/llm/azure_openai.py
+++ b/lightrag/llm/azure_openai.py
@@ -26,6 +26,7 @@ from lightrag.utils import (
safe_unicode_decode,
logger,
)
+from lightrag.types import GPTKeywordExtractionFormat
import numpy as np
@@ -46,6 +47,7 @@ async def azure_openai_complete_if_cache(
base_url: str | None = None,
api_key: str | None = None,
api_version: str | None = None,
+ keyword_extraction: bool = False,
**kwargs,
):
if enable_cot:
@@ -66,9 +68,12 @@ async def azure_openai_complete_if_cache(
)
kwargs.pop("hashing_kv", None)
- kwargs.pop("keyword_extraction", None)
timeout = kwargs.pop("timeout", None)
+ # Handle keyword extraction mode
+ if keyword_extraction:
+ kwargs["response_format"] = GPTKeywordExtractionFormat
+
openai_async_client = AsyncAzureOpenAI(
azure_endpoint=base_url,
azure_deployment=deployment,
@@ -85,7 +90,7 @@ async def azure_openai_complete_if_cache(
messages.append({"role": "user", "content": prompt})
if "response_format" in kwargs:
- response = await openai_async_client.beta.chat.completions.parse(
+ response = await openai_async_client.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
@@ -108,21 +113,32 @@ async def azure_openai_complete_if_cache(
return inner()
else:
- content = response.choices[0].message.content
- if r"\u" in content:
- content = safe_unicode_decode(content.encode("utf-8"))
+ message = response.choices[0].message
+
+ # Handle parsed responses (structured output via response_format)
+ # When using beta.chat.completions.parse(), the response is in message.parsed
+ if hasattr(message, "parsed") and message.parsed is not None:
+ # Serialize the parsed structured response to JSON
+ content = message.parsed.model_dump_json()
+ logger.debug("Using parsed structured response from API")
+ else:
+ # Handle regular content responses
+ content = message.content
+ if content and r"\u" in content:
+ content = safe_unicode_decode(content.encode("utf-8"))
+
return content
async def azure_openai_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
- kwargs.pop("keyword_extraction", None)
result = await azure_openai_complete_if_cache(
os.getenv("LLM_MODEL", "gpt-4o-mini"),
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
+ keyword_extraction=keyword_extraction,
**kwargs,
)
return result
diff --git a/lightrag/llm/openai.py b/lightrag/llm/openai.py
index 8c984e51..6da79c2c 100644
--- a/lightrag/llm/openai.py
+++ b/lightrag/llm/openai.py
@@ -203,6 +203,10 @@ async def openai_complete_if_cache(
# Extract client configuration options
client_configs = kwargs.pop("openai_client_configs", {})
+ # Handle keyword extraction mode
+ if keyword_extraction:
+ kwargs["response_format"] = GPTKeywordExtractionFormat
+
# Create the OpenAI client
openai_async_client = create_openai_async_client(
api_key=api_key,
@@ -237,7 +241,7 @@ async def openai_complete_if_cache(
try:
# Don't use async with context manager, use client directly
if "response_format" in kwargs:
- response = await openai_async_client.beta.chat.completions.parse(
+ response = await openai_async_client.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
@@ -449,46 +453,57 @@ async def openai_complete_if_cache(
raise InvalidResponseError("Invalid response from OpenAI API")
message = response.choices[0].message
- content = getattr(message, "content", None)
- reasoning_content = getattr(message, "reasoning_content", "")
- # Handle COT logic for non-streaming responses (only if enabled)
- final_content = ""
+ # Handle parsed responses (structured output via response_format)
+ # When using beta.chat.completions.parse(), the response is in message.parsed
+ if hasattr(message, "parsed") and message.parsed is not None:
+ # Serialize the parsed structured response to JSON
+ final_content = message.parsed.model_dump_json()
+ logger.debug("Using parsed structured response from API")
+ else:
+ # Handle regular content responses
+ content = getattr(message, "content", None)
+ reasoning_content = getattr(message, "reasoning_content", "")
- if enable_cot:
- # Check if we should include reasoning content
- should_include_reasoning = False
- if reasoning_content and reasoning_content.strip():
- if not content or content.strip() == "":
- # Case 1: Only reasoning content, should include COT
- should_include_reasoning = True
- final_content = (
- content or ""
- ) # Use empty string if content is None
+ # Handle COT logic for non-streaming responses (only if enabled)
+ final_content = ""
+
+ if enable_cot:
+ # Check if we should include reasoning content
+ should_include_reasoning = False
+ if reasoning_content and reasoning_content.strip():
+ if not content or content.strip() == "":
+ # Case 1: Only reasoning content, should include COT
+ should_include_reasoning = True
+ final_content = (
+ content or ""
+ ) # Use empty string if content is None
+ else:
+ # Case 3: Both content and reasoning_content present, ignore reasoning
+ should_include_reasoning = False
+ final_content = content
else:
- # Case 3: Both content and reasoning_content present, ignore reasoning
- should_include_reasoning = False
- final_content = content
+ # No reasoning content, use regular content
+ final_content = content or ""
+
+ # Apply COT wrapping if needed
+ if should_include_reasoning:
+ if r"\u" in reasoning_content:
+ reasoning_content = safe_unicode_decode(
+ reasoning_content.encode("utf-8")
+ )
+ final_content = (
+ f"{reasoning_content}{final_content}"
+ )
else:
- # No reasoning content, use regular content
+ # COT disabled, only use regular content
final_content = content or ""
- # Apply COT wrapping if needed
- if should_include_reasoning:
- if r"\u" in reasoning_content:
- reasoning_content = safe_unicode_decode(
- reasoning_content.encode("utf-8")
- )
- final_content = f"{reasoning_content}{final_content}"
- else:
- # COT disabled, only use regular content
- final_content = content or ""
-
- # Validate final content
- if not final_content or final_content.strip() == "":
- logger.error("Received empty content from OpenAI API")
- await openai_async_client.close() # Ensure client is closed
- raise InvalidResponseError("Received empty content from OpenAI API")
+ # Validate final content
+ if not final_content or final_content.strip() == "":
+ logger.error("Received empty content from OpenAI API")
+ await openai_async_client.close() # Ensure client is closed
+ raise InvalidResponseError("Received empty content from OpenAI API")
# Apply Unicode decoding to final content if needed
if r"\u" in final_content:
@@ -522,8 +537,6 @@ async def openai_complete(
) -> Union[str, AsyncIterator[str]]:
if history_messages is None:
history_messages = []
- if keyword_extraction:
- kwargs["response_format"] = "json"
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await openai_complete_if_cache(
model_name,
@@ -545,8 +558,6 @@ async def gpt_4o_complete(
) -> str:
if history_messages is None:
history_messages = []
- if keyword_extraction:
- kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o",
prompt,
@@ -568,8 +579,6 @@ async def gpt_4o_mini_complete(
) -> str:
if history_messages is None:
history_messages = []
- if keyword_extraction:
- kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
diff --git a/pyproject.toml b/pyproject.toml
index b76315d9..8d48b5df 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -58,7 +58,7 @@ api = [
"nano-vectordb",
"networkx",
"numpy>=1.24.0,<2.0.0",
- "openai>=1.0.0,<3.0.0",
+ "openai>=2.0.0,<3.0.0",
"pandas>=2.0.0,<2.4.0",
"pipmaster",
"pydantic",
@@ -115,7 +115,7 @@ offline-storage = [
offline-llm = [
# LLM provider dependencies
- "openai>=1.0.0,<3.0.0",
+ "openai>=2.0.0,<3.0.0",
"anthropic>=0.18.0,<1.0.0",
"ollama>=0.1.0,<1.0.0",
"zhipuai>=2.0.0,<3.0.0",
diff --git a/requirements-offline-llm.txt b/requirements-offline-llm.txt
index 1539552a..bcfb1451 100644
--- a/requirements-offline-llm.txt
+++ b/requirements-offline-llm.txt
@@ -14,6 +14,6 @@ google-api-core>=2.0.0,<3.0.0
google-genai>=1.0.0,<2.0.0
llama-index>=0.9.0,<1.0.0
ollama>=0.1.0,<1.0.0
-openai>=1.0.0,<3.0.0
+openai>=2.0.0,<3.0.0
voyageai>=0.2.0,<1.0.0
zhipuai>=2.0.0,<3.0.0
diff --git a/requirements-offline.txt b/requirements-offline.txt
index 50848093..87ca7a6a 100644
--- a/requirements-offline.txt
+++ b/requirements-offline.txt
@@ -19,7 +19,7 @@ google-genai>=1.0.0,<2.0.0
llama-index>=0.9.0,<1.0.0
neo4j>=5.0.0,<7.0.0
ollama>=0.1.0,<1.0.0
-openai>=1.0.0,<3.0.0
+openai>=2.0.0,<3.0.0
openpyxl>=3.0.0,<4.0.0
pycryptodome>=3.0.0,<4.0.0
pymilvus>=2.6.2,<3.0.0
diff --git a/uv.lock b/uv.lock
index 97703af0..a4f17ab4 100644
--- a/uv.lock
+++ b/uv.lock
@@ -2735,7 +2735,6 @@ requires-dist = [
{ name = "json-repair", marker = "extra == 'api'" },
{ name = "langfuse", marker = "extra == 'observability'", specifier = ">=3.8.1" },
{ name = "lightrag-hku", extras = ["api", "offline-llm", "offline-storage"], marker = "extra == 'offline'" },
- { name = "lightrag-hku", extras = ["pytest"], marker = "extra == 'evaluation'" },
{ name = "llama-index", marker = "extra == 'offline-llm'", specifier = ">=0.9.0,<1.0.0" },
{ name = "nano-vectordb" },
{ name = "nano-vectordb", marker = "extra == 'api'" },
@@ -2745,14 +2744,15 @@ requires-dist = [
{ name = "numpy", specifier = ">=1.24.0,<2.0.0" },
{ name = "numpy", marker = "extra == 'api'", specifier = ">=1.24.0,<2.0.0" },
{ name = "ollama", marker = "extra == 'offline-llm'", specifier = ">=0.1.0,<1.0.0" },
- { name = "openai", marker = "extra == 'api'", specifier = ">=1.0.0,<3.0.0" },
- { name = "openai", marker = "extra == 'offline-llm'", specifier = ">=1.0.0,<3.0.0" },
+ { name = "openai", marker = "extra == 'api'", specifier = ">=2.0.0,<3.0.0" },
+ { name = "openai", marker = "extra == 'offline-llm'", specifier = ">=2.0.0,<3.0.0" },
{ name = "openpyxl", marker = "extra == 'api'", specifier = ">=3.0.0,<4.0.0" },
{ name = "pandas", specifier = ">=2.0.0,<2.4.0" },
{ name = "pandas", marker = "extra == 'api'", specifier = ">=2.0.0,<2.4.0" },
{ name = "passlib", extras = ["bcrypt"], marker = "extra == 'api'" },
{ name = "pipmaster" },
{ name = "pipmaster", marker = "extra == 'api'" },
+ { name = "pre-commit", marker = "extra == 'evaluation'" },
{ name = "pre-commit", marker = "extra == 'pytest'" },
{ name = "psutil", marker = "extra == 'api'" },
{ name = "pycryptodome", marker = "extra == 'api'", specifier = ">=3.0.0,<4.0.0" },
@@ -2764,7 +2764,9 @@ requires-dist = [
{ name = "pypdf", marker = "extra == 'api'", specifier = ">=6.1.0" },
{ name = "pypinyin" },
{ name = "pypinyin", marker = "extra == 'api'" },
+ { name = "pytest", marker = "extra == 'evaluation'", specifier = ">=8.4.2" },
{ name = "pytest", marker = "extra == 'pytest'", specifier = ">=8.4.2" },
+ { name = "pytest-asyncio", marker = "extra == 'evaluation'", specifier = ">=1.2.0" },
{ name = "pytest-asyncio", marker = "extra == 'pytest'", specifier = ">=1.2.0" },
{ name = "python-docx", marker = "extra == 'api'", specifier = ">=0.8.11,<2.0.0" },
{ name = "python-dotenv" },