diff --git a/README-zh.md b/README-zh.md index 12ab7b62..6aab2a43 100644 --- a/README-zh.md +++ b/README-zh.md @@ -749,6 +749,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray: rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, + llm_model_name="gemini-2.0-flash", embedding_func=embedding_func ) ``` @@ -972,7 +973,7 @@ async def initialize_rag(): * PostgreSQL 很轻量,包含所有必要插件的完整二进制发行版可以压缩到 40MB:参考 [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0),Linux/Mac 也很容易安装。 * 如果您喜欢 docker,建议初学者使用此镜像以避免出现问题(默认用户密码:rag/rag):https://hub.docker.com/r/gzdaniel/postgres-for-rag -* 如何开始?参考:[examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py) +* 如何开始?参考:[examples/lightrag_gemini_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_gemini_postgres_demo.py) * 对于高性能图数据库需求,推荐使用 Neo4j,因为 Apache AGE 的性能不够理想。 diff --git a/README.md b/README.md index c10c6927..1674865b 100644 --- a/README.md +++ b/README.md @@ -973,7 +973,7 @@ For production level scenarios you will most likely want to leverage an enterpri * PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac. * If you prefer docker, please start with this image if you are a beginner to avoid hiccups (Default user password:rag/rag): https://hub.docker.com/r/gzdaniel/postgres-for-rag -* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py) +* How to start? Ref to: [examples/lightrag_gemini_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_gemini_postgres_demo.py) * For high-performance graph database requirements, Neo4j is recommended as Apache AGE's performance is not as competitive.