diff --git a/README.md b/README.md index 0ab21759..090b2d99 100644 --- a/README.md +++ b/README.md @@ -718,18 +718,18 @@ If you want to use Google Gemini models, you only need to set up LightRAG as fol import os import numpy as np from lightrag.utils import wrap_embedding_func_with_attrs -from lightrag.llm.gemini import gemini_complete, gemini_embed +from lightrag.llm.gemini import gemini_model_complete, gemini_embed # Configure the generation model async def llm_model_func( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: - return await gemini_complete( + return await gemini_model_complete( prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=os.getenv("GEMINI_API_KEY"), - model="gemini-1.5-flash", + model_name="gemini-2.0-flash", **kwargs ) @@ -749,6 +749,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray: rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, + llm_model_name="gemini-2.0-flash", embedding_func=embedding_func ) ```