Files
lightrag/tests/test_workspace_isolation.py
yangdx 1c083c6699 Remove redundant pytest.mark.asyncio decorators
- Remove explicit asyncio markers
- Clean up unused imports in tests
2025-12-19 16:00:37 +08:00

1183 lines
46 KiB
Python

#!/usr/bin/env python
"""
Test script for Workspace Isolation Feature
Comprehensive test suite covering workspace isolation in LightRAG:
1. Pipeline Status Isolation - Data isolation between workspaces
2. Lock Mechanism - Parallel execution for different workspaces, serial for same workspace
3. Backward Compatibility - Legacy code without workspace parameters
4. Multi-Workspace Concurrency - Concurrent operations on different workspaces
5. NamespaceLock Re-entrance Protection - Prevents deadlocks
6. Different Namespace Lock Isolation - Locks isolated by namespace
7. Error Handling - Invalid workspace configurations
8. Update Flags Workspace Isolation - Update flags properly isolated
9. Empty Workspace Standardization - Empty workspace handling
10. JsonKVStorage Workspace Isolation - Integration test for KV storage
11. LightRAG End-to-End Workspace Isolation - Complete E2E test with two instances
Total: 11 test scenarios
"""
import asyncio
import time
import os
import shutil
import numpy as np
import pytest
from pathlib import Path
from typing import List, Tuple, Dict
from lightrag.kg.shared_storage import (
get_final_namespace,
get_namespace_lock,
get_default_workspace,
set_default_workspace,
initialize_share_data,
finalize_share_data,
initialize_pipeline_status,
get_namespace_data,
set_all_update_flags,
clear_all_update_flags,
get_all_update_flags_status,
get_update_flag,
)
# =============================================================================
# Test Configuration
# =============================================================================
# Test configuration is handled via pytest fixtures in conftest.py
# - Use CLI options: --keep-artifacts, --stress-test, --test-workers=N
# - Or environment variables: LIGHTRAG_KEEP_ARTIFACTS, LIGHTRAG_STRESS_TEST, LIGHTRAG_TEST_WORKERS
# Priority: CLI options > Environment variables > Default values
# =============================================================================
# Pytest Fixtures
# =============================================================================
@pytest.fixture(autouse=True)
def setup_shared_data():
"""Initialize shared data before each test"""
initialize_share_data()
yield
finalize_share_data()
async def _measure_lock_parallelism(
workload: List[Tuple[str, str, str]], hold_time: float = 0.05
) -> Tuple[int, List[Tuple[str, str]], Dict[str, float]]:
"""Run lock acquisition workload and capture peak concurrency and timeline.
Args:
workload: List of (name, workspace, namespace) tuples
hold_time: How long each worker holds the lock (seconds)
Returns:
Tuple of (max_parallel, timeline, metrics) where:
- max_parallel: Peak number of concurrent lock holders
- timeline: List of (name, event) tuples tracking execution order
- metrics: Dict with performance metrics (total_duration, max_concurrency, etc.)
"""
running = 0
max_parallel = 0
timeline: List[Tuple[str, str]] = []
start_time = time.time()
async def worker(name: str, workspace: str, namespace: str) -> None:
nonlocal running, max_parallel
lock = get_namespace_lock(namespace, workspace)
async with lock:
running += 1
max_parallel = max(max_parallel, running)
timeline.append((name, "start"))
await asyncio.sleep(hold_time)
timeline.append((name, "end"))
running -= 1
await asyncio.gather(*(worker(*args) for args in workload))
metrics = {
"total_duration": time.time() - start_time,
"max_concurrency": max_parallel,
"avg_hold_time": hold_time,
"num_workers": len(workload),
}
return max_parallel, timeline, metrics
def _assert_no_timeline_overlap(timeline: List[Tuple[str, str]]) -> None:
"""Ensure that timeline events never overlap for sequential execution.
This function implements a finite state machine that validates:
- No overlapping lock acquisitions (only one task active at a time)
- Proper lock release order (task releases its own lock)
- All locks are properly released
Args:
timeline: List of (name, event) tuples where event is "start" or "end"
Raises:
AssertionError: If timeline shows overlapping execution or improper locking
"""
active_task = None
for name, event in timeline:
if event == "start":
if active_task is not None:
raise AssertionError(
f"Task '{name}' started before '{active_task}' released the lock"
)
active_task = name
else:
if active_task != name:
raise AssertionError(
f"Task '{name}' finished while '{active_task}' was expected to hold the lock"
)
active_task = None
if active_task is not None:
raise AssertionError(f"Task '{active_task}' did not release the lock properly")
# =============================================================================
# Test 1: Pipeline Status Isolation Test
# =============================================================================
@pytest.mark.offline
async def test_pipeline_status_isolation():
"""
Test that pipeline status is isolated between different workspaces.
"""
# Purpose: Ensure pipeline_status shared data remains unique per workspace.
# Scope: initialize_pipeline_status and get_namespace_data interactions.
print("\n" + "=" * 60)
print("TEST 1: Pipeline Status Isolation")
print("=" * 60)
# Initialize shared storage
initialize_share_data()
# Initialize pipeline status for two different workspaces
workspace1 = "test_workspace_1"
workspace2 = "test_workspace_2"
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Get pipeline status data for both workspaces
data1 = await get_namespace_data("pipeline_status", workspace=workspace1)
data2 = await get_namespace_data("pipeline_status", workspace=workspace2)
# Verify they are independent objects
assert (
data1 is not data2
), "Pipeline status data objects are the same (should be different)"
# Modify workspace1's data and verify workspace2 is not affected
data1["test_key"] = "workspace1_value"
# Re-fetch to ensure we get the latest data
data1_check = await get_namespace_data("pipeline_status", workspace=workspace1)
data2_check = await get_namespace_data("pipeline_status", workspace=workspace2)
assert "test_key" in data1_check, "test_key not found in workspace1"
assert (
data1_check["test_key"] == "workspace1_value"
), f"workspace1 test_key value incorrect: {data1_check.get('test_key')}"
assert (
"test_key" not in data2_check
), f"test_key leaked to workspace2: {data2_check.get('test_key')}"
print("✅ PASSED: Pipeline Status Isolation")
print(" Different workspaces have isolated pipeline status")
# =============================================================================
# Test 2: Lock Mechanism Test (No Deadlocks)
# =============================================================================
@pytest.mark.offline
async def test_lock_mechanism(stress_test_mode, parallel_workers):
"""
Test that the new keyed lock mechanism works correctly without deadlocks.
Tests both parallel execution for different workspaces and serialization
for the same workspace.
"""
# Purpose: Validate that keyed locks isolate workspaces while serializing
# requests within the same workspace. Scope: get_namespace_lock scheduling
# semantics for both cross-workspace and single-workspace cases.
print("\n" + "=" * 60)
print("TEST 2: Lock Mechanism (No Deadlocks)")
print("=" * 60)
# Test 2.1: Different workspaces should run in parallel
print("\nTest 2.1: Different workspaces locks should be parallel")
# Support stress testing with configurable number of workers
num_workers = parallel_workers if stress_test_mode else 3
parallel_workload = [
(f"ws_{chr(97+i)}", f"ws_{chr(97+i)}", "test_namespace")
for i in range(num_workers)
]
max_parallel, timeline_parallel, metrics = await _measure_lock_parallelism(
parallel_workload
)
assert max_parallel >= 2, (
"Locks for distinct workspaces should overlap; "
f"observed max concurrency: {max_parallel}, timeline={timeline_parallel}"
)
print("✅ PASSED: Lock Mechanism - Parallel (Different Workspaces)")
print(
f" Locks overlapped for different workspaces (max concurrency={max_parallel})"
)
print(
f" Performance: {metrics['total_duration']:.3f}s for {metrics['num_workers']} workers"
)
# Test 2.2: Same workspace should serialize
print("\nTest 2.2: Same workspace locks should serialize")
serial_workload = [
("serial_run_1", "ws_same", "test_namespace"),
("serial_run_2", "ws_same", "test_namespace"),
]
(
max_parallel_serial,
timeline_serial,
metrics_serial,
) = await _measure_lock_parallelism(serial_workload)
assert max_parallel_serial == 1, (
"Same workspace locks should not overlap; "
f"observed {max_parallel_serial} with timeline {timeline_serial}"
)
_assert_no_timeline_overlap(timeline_serial)
print("✅ PASSED: Lock Mechanism - Serial (Same Workspace)")
print(" Same workspace operations executed sequentially with no overlap")
print(
f" Performance: {metrics_serial['total_duration']:.3f}s for {metrics_serial['num_workers']} tasks"
)
# =============================================================================
# Test 3: Backward Compatibility Test
# =============================================================================
@pytest.mark.offline
async def test_backward_compatibility():
"""
Test that legacy code without workspace parameter still works correctly.
"""
# Purpose: Validate backward-compatible defaults when workspace arguments
# are omitted. Scope: get_final_namespace, set/get_default_workspace and
# initialize_pipeline_status fallback behavior.
print("\n" + "=" * 60)
print("TEST 3: Backward Compatibility")
print("=" * 60)
# Test 3.1: get_final_namespace with None should use default workspace
print("\nTest 3.1: get_final_namespace with workspace=None")
set_default_workspace("my_default_workspace")
final_ns = get_final_namespace("pipeline_status")
expected = "my_default_workspace:pipeline_status"
assert final_ns == expected, f"Expected {expected}, got {final_ns}"
print("✅ PASSED: Backward Compatibility - get_final_namespace")
print(f" Correctly uses default workspace: {final_ns}")
# Test 3.2: get_default_workspace
print("\nTest 3.2: get/set default workspace")
set_default_workspace("test_default")
retrieved = get_default_workspace()
assert retrieved == "test_default", f"Expected 'test_default', got {retrieved}"
print("✅ PASSED: Backward Compatibility - default workspace")
print(f" Default workspace set/get correctly: {retrieved}")
# Test 3.3: Empty workspace handling
print("\nTest 3.3: Empty workspace handling")
set_default_workspace("")
final_ns_empty = get_final_namespace("pipeline_status", workspace=None)
expected_empty = "pipeline_status" # Should be just the namespace without ':'
assert (
final_ns_empty == expected_empty
), f"Expected '{expected_empty}', got '{final_ns_empty}'"
print("✅ PASSED: Backward Compatibility - empty workspace")
print(f" Empty workspace handled correctly: '{final_ns_empty}'")
# Test 3.4: None workspace with default set
print("\nTest 3.4: initialize_pipeline_status with workspace=None")
set_default_workspace("compat_test_workspace")
initialize_share_data()
await initialize_pipeline_status(workspace=None) # Should use default
# Try to get data using the default workspace explicitly
data = await get_namespace_data(
"pipeline_status", workspace="compat_test_workspace"
)
assert (
data is not None
), "Failed to initialize pipeline status with default workspace"
print("✅ PASSED: Backward Compatibility - pipeline init with None")
print(" Pipeline status initialized with default workspace")
# =============================================================================
# Test 4: Multi-Workspace Concurrency Test
# =============================================================================
@pytest.mark.offline
async def test_multi_workspace_concurrency():
"""
Test that multiple workspaces can operate concurrently without interference.
Simulates concurrent operations on different workspaces.
"""
# Purpose: Simulate concurrent workloads touching pipeline_status across
# workspaces. Scope: initialize_pipeline_status, get_namespace_lock, and
# shared dictionary mutation while ensuring isolation.
print("\n" + "=" * 60)
print("TEST 4: Multi-Workspace Concurrency")
print("=" * 60)
initialize_share_data()
async def workspace_operations(workspace_id):
"""Simulate operations on a specific workspace"""
print(f"\n [{workspace_id}] Starting operations")
# Initialize pipeline status
await initialize_pipeline_status(workspace_id)
# Get lock and perform operations
lock = get_namespace_lock("test_operations", workspace_id)
async with lock:
# Get workspace data
data = await get_namespace_data("pipeline_status", workspace=workspace_id)
# Modify data
data[f"{workspace_id}_key"] = f"{workspace_id}_value"
data["timestamp"] = time.time()
# Simulate some work
await asyncio.sleep(0.1)
print(f" [{workspace_id}] Completed operations")
return workspace_id
# Run multiple workspaces concurrently
workspaces = ["concurrent_ws_1", "concurrent_ws_2", "concurrent_ws_3"]
start = time.time()
results_list = await asyncio.gather(
*[workspace_operations(ws) for ws in workspaces]
)
elapsed = time.time() - start
print(f"\n All workspaces completed in {elapsed:.2f}s")
# Verify all workspaces completed
assert set(results_list) == set(workspaces), "Not all workspaces completed"
print("✅ PASSED: Multi-Workspace Concurrency - Execution")
print(
f" All {len(workspaces)} workspaces completed successfully in {elapsed:.2f}s"
)
# Verify data isolation - each workspace should have its own data
print("\n Verifying data isolation...")
for ws in workspaces:
data = await get_namespace_data("pipeline_status", workspace=ws)
expected_key = f"{ws}_key"
expected_value = f"{ws}_value"
assert (
expected_key in data
), f"Data not properly isolated for {ws}: missing {expected_key}"
assert (
data[expected_key] == expected_value
), f"Data not properly isolated for {ws}: {expected_key}={data[expected_key]} (expected {expected_value})"
print(f" [{ws}] Data correctly isolated: {expected_key}={data[expected_key]}")
print("✅ PASSED: Multi-Workspace Concurrency - Data Isolation")
print(" All workspaces have properly isolated data")
# =============================================================================
# Test 5: NamespaceLock Re-entrance Protection
# =============================================================================
@pytest.mark.offline
async def test_namespace_lock_reentrance():
"""
Test that NamespaceLock prevents re-entrance in the same coroutine
and allows concurrent use in different coroutines.
"""
# Purpose: Ensure NamespaceLock enforces single entry per coroutine while
# allowing concurrent reuse through ContextVar isolation. Scope: lock
# re-entrance checks and concurrent gather semantics.
print("\n" + "=" * 60)
print("TEST 5: NamespaceLock Re-entrance Protection")
print("=" * 60)
# Test 5.1: Same coroutine re-entrance should fail
print("\nTest 5.1: Same coroutine re-entrance should raise RuntimeError")
lock = get_namespace_lock("test_reentrance", "test_ws")
reentrance_failed_correctly = False
try:
async with lock:
print(" Acquired lock first time")
# Try to acquire the same lock again in the same coroutine
async with lock:
print(" ERROR: Should not reach here - re-entrance succeeded!")
except RuntimeError as e:
if "already acquired" in str(e).lower():
print(f" ✓ Re-entrance correctly blocked: {e}")
reentrance_failed_correctly = True
else:
raise
assert reentrance_failed_correctly, "Re-entrance protection not working"
print("✅ PASSED: NamespaceLock Re-entrance Protection")
print(" Re-entrance correctly raises RuntimeError")
# Test 5.2: Same NamespaceLock instance in different coroutines should succeed
print("\nTest 5.2: Same NamespaceLock instance in different coroutines")
shared_lock = get_namespace_lock("test_concurrent", "test_ws")
concurrent_results = []
async def use_shared_lock(coroutine_id):
"""Use the same NamespaceLock instance"""
async with shared_lock:
concurrent_results.append(f"coroutine_{coroutine_id}_start")
await asyncio.sleep(0.1)
concurrent_results.append(f"coroutine_{coroutine_id}_end")
# This should work because each coroutine gets its own ContextVar
await asyncio.gather(
use_shared_lock(1),
use_shared_lock(2),
)
# Both coroutines should have completed
expected_entries = 4 # 2 starts + 2 ends
assert (
len(concurrent_results) == expected_entries
), f"Expected {expected_entries} entries, got {len(concurrent_results)}"
print("✅ PASSED: NamespaceLock Concurrent Reuse")
print(
f" Same NamespaceLock instance used successfully in {expected_entries//2} concurrent coroutines"
)
# =============================================================================
# Test 6: Different Namespace Lock Isolation
# =============================================================================
@pytest.mark.offline
async def test_different_namespace_lock_isolation():
"""
Test that locks for different namespaces (same workspace) are independent.
"""
# Purpose: Confirm that namespace isolation is enforced even when workspace
# is the same. Scope: get_namespace_lock behavior when namespaces differ.
print("\n" + "=" * 60)
print("TEST 6: Different Namespace Lock Isolation")
print("=" * 60)
print("\nTesting locks with same workspace but different namespaces")
workload = [
("ns_a", "same_ws", "namespace_a"),
("ns_b", "same_ws", "namespace_b"),
("ns_c", "same_ws", "namespace_c"),
]
max_parallel, timeline, metrics = await _measure_lock_parallelism(workload)
assert max_parallel >= 2, (
"Different namespaces within the same workspace should run concurrently; "
f"observed max concurrency {max_parallel} with timeline {timeline}"
)
print("✅ PASSED: Different Namespace Lock Isolation")
print(
f" Different namespace locks ran in parallel (max concurrency={max_parallel})"
)
print(
f" Performance: {metrics['total_duration']:.3f}s for {metrics['num_workers']} namespaces"
)
# =============================================================================
# Test 7: Error Handling
# =============================================================================
@pytest.mark.offline
async def test_error_handling():
"""
Test error handling for invalid workspace configurations.
"""
# Purpose: Validate guardrails for workspace normalization and namespace
# derivation. Scope: set_default_workspace conversions and get_final_namespace
# failure paths when configuration is invalid.
print("\n" + "=" * 60)
print("TEST 7: Error Handling")
print("=" * 60)
# Test 7.0: Missing default workspace should raise ValueError
print("\nTest 7.0: Missing workspace raises ValueError")
with pytest.raises(ValueError):
get_final_namespace("test_namespace", workspace=None)
# Test 7.1: set_default_workspace(None) converts to empty string
print("\nTest 7.1: set_default_workspace(None) converts to empty string")
set_default_workspace(None)
default_ws = get_default_workspace()
# Should convert None to "" automatically
assert default_ws == "", f"Expected empty string, got: '{default_ws}'"
print("✅ PASSED: Error Handling - None to Empty String")
print(
f" set_default_workspace(None) correctly converts to empty string: '{default_ws}'"
)
# Test 7.2: Empty string workspace behavior
print("\nTest 7.2: Empty string workspace creates valid namespace")
# With empty workspace, should create namespace without colon
final_ns = get_final_namespace("test_namespace", workspace="")
assert final_ns == "test_namespace", f"Unexpected namespace: '{final_ns}'"
print("✅ PASSED: Error Handling - Empty Workspace Namespace")
print(f" Empty workspace creates valid namespace: '{final_ns}'")
# Restore default workspace for other tests
set_default_workspace("")
# =============================================================================
# Test 8: Update Flags Workspace Isolation
# =============================================================================
@pytest.mark.offline
async def test_update_flags_workspace_isolation():
"""
Test that update flags are properly isolated between workspaces.
"""
# Purpose: Confirm update flag setters/readers respect workspace scoping.
# Scope: set_all_update_flags, clear_all_update_flags, get_all_update_flags_status,
# and get_update_flag interactions across namespaces.
print("\n" + "=" * 60)
print("TEST 8: Update Flags Workspace Isolation")
print("=" * 60)
initialize_share_data()
workspace1 = "update_flags_ws1"
workspace2 = "update_flags_ws2"
test_namespace = "test_update_flags_ns"
# Initialize namespaces for both workspaces
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Test 8.1: set_all_update_flags isolation
print("\nTest 8.1: set_all_update_flags workspace isolation")
# Create flags for both workspaces (simulating workers)
flag1_obj = await get_update_flag(test_namespace, workspace=workspace1)
flag2_obj = await get_update_flag(test_namespace, workspace=workspace2)
# Initial state should be False
assert flag1_obj.value is False, "Flag1 initial value should be False"
assert flag2_obj.value is False, "Flag2 initial value should be False"
# Set all flags for workspace1
await set_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are set
assert (
flag1_obj.value is True
), f"Flag1 should be True after set_all_update_flags, got {flag1_obj.value}"
assert (
flag2_obj.value is False
), f"Flag2 should still be False, got {flag2_obj.value}"
print("✅ PASSED: Update Flags - set_all_update_flags Isolation")
print(
f" set_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}"
)
# Test 8.2: clear_all_update_flags isolation
print("\nTest 8.2: clear_all_update_flags workspace isolation")
# Set flags for both workspaces
await set_all_update_flags(test_namespace, workspace=workspace1)
await set_all_update_flags(test_namespace, workspace=workspace2)
# Verify both are set
assert flag1_obj.value is True, "Flag1 should be True"
assert flag2_obj.value is True, "Flag2 should be True"
# Clear only workspace1
await clear_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are cleared
assert (
flag1_obj.value is False
), f"Flag1 should be False after clear, got {flag1_obj.value}"
assert flag2_obj.value is True, f"Flag2 should still be True, got {flag2_obj.value}"
print("✅ PASSED: Update Flags - clear_all_update_flags Isolation")
print(
f" clear_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}"
)
# Test 8.3: get_all_update_flags_status workspace filtering
print("\nTest 8.3: get_all_update_flags_status workspace filtering")
# Initialize more namespaces for testing
await get_update_flag("ns_a", workspace=workspace1)
await get_update_flag("ns_b", workspace=workspace1)
await get_update_flag("ns_c", workspace=workspace2)
# Set flags for workspace1
await set_all_update_flags("ns_a", workspace=workspace1)
await set_all_update_flags("ns_b", workspace=workspace1)
# Set flags for workspace2
await set_all_update_flags("ns_c", workspace=workspace2)
# Get status for workspace1 only
status1 = await get_all_update_flags_status(workspace=workspace1)
# Check that workspace1's namespaces are present
# The keys should include workspace1's namespaces but not workspace2's
workspace1_keys = [k for k in status1.keys() if workspace1 in k]
workspace2_keys = [k for k in status1.keys() if workspace2 in k]
assert (
len(workspace1_keys) > 0
), f"workspace1 keys should be present, got {len(workspace1_keys)}"
assert (
len(workspace2_keys) == 0
), f"workspace2 keys should not be present, got {len(workspace2_keys)}"
for key, values in status1.items():
assert all(values), f"All flags in {key} should be True, got {values}"
# Workspace2 query should only surface workspace2 namespaces
status2 = await get_all_update_flags_status(workspace=workspace2)
expected_ws2_keys = {
f"{workspace2}:{test_namespace}",
f"{workspace2}:ns_c",
}
assert (
set(status2.keys()) == expected_ws2_keys
), f"Unexpected namespaces for workspace2: {status2.keys()}"
for key, values in status2.items():
assert all(values), f"All flags in {key} should be True, got {values}"
print("✅ PASSED: Update Flags - get_all_update_flags_status Filtering")
print(
f" Status correctly filtered: ws1 keys={len(workspace1_keys)}, ws2 keys={len(workspace2_keys)}"
)
# =============================================================================
# Test 9: Empty Workspace Standardization
# =============================================================================
@pytest.mark.offline
async def test_empty_workspace_standardization():
"""
Test that empty workspace is properly standardized to "" instead of "_".
"""
# Purpose: Verify namespace formatting when workspace is an empty string.
# Scope: get_final_namespace output and initialize_pipeline_status behavior
# between empty and non-empty workspaces.
print("\n" + "=" * 60)
print("TEST 9: Empty Workspace Standardization")
print("=" * 60)
# Test 9.1: Empty string workspace creates namespace without colon
print("\nTest 9.1: Empty string workspace namespace format")
set_default_workspace("")
final_ns = get_final_namespace("test_namespace", workspace=None)
# Should be just "test_namespace" without colon prefix
assert (
final_ns == "test_namespace"
), f"Unexpected namespace format: '{final_ns}' (expected 'test_namespace')"
print("✅ PASSED: Empty Workspace Standardization - Format")
print(f" Empty workspace creates correct namespace: '{final_ns}'")
# Test 9.2: Empty workspace vs non-empty workspace behavior
print("\nTest 9.2: Empty vs non-empty workspace behavior")
initialize_share_data()
# Initialize with empty workspace
await initialize_pipeline_status(workspace="")
data_empty = await get_namespace_data("pipeline_status", workspace="")
# Initialize with non-empty workspace
await initialize_pipeline_status(workspace="test_ws")
data_nonempty = await get_namespace_data("pipeline_status", workspace="test_ws")
# They should be different objects
assert (
data_empty is not data_nonempty
), "Empty and non-empty workspaces share data (should be independent)"
print("✅ PASSED: Empty Workspace Standardization - Behavior")
print(" Empty and non-empty workspaces have independent data")
# =============================================================================
# Test 10: JsonKVStorage Workspace Isolation (Integration Test)
# =============================================================================
@pytest.mark.offline
async def test_json_kv_storage_workspace_isolation(keep_test_artifacts):
"""
Integration test: Verify JsonKVStorage properly isolates data between workspaces.
Creates two JsonKVStorage instances with different workspaces, writes different data,
and verifies they don't mix.
"""
# Purpose: Ensure JsonKVStorage respects workspace-specific directories and data.
# Scope: storage initialization, upsert/get_by_id operations, and filesystem layout
# inside the temporary working directory.
print("\n" + "=" * 60)
print("TEST 10: JsonKVStorage Workspace Isolation (Integration)")
print("=" * 60)
# Create temporary test directory under project temp/
test_dir = str(
Path(__file__).parent.parent / "temp/test_json_kv_storage_workspace_isolation"
)
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
print(f"\n Using test directory: {test_dir}")
try:
initialize_share_data()
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Global config
global_config = {
"working_dir": test_dir,
"embedding_batch_num": 10,
}
# Test 10.1: Create two JsonKVStorage instances with different workspaces
print(
"\nTest 10.1: Create two JsonKVStorage instances with different workspaces"
)
from lightrag.kg.json_kv_impl import JsonKVStorage
storage1 = JsonKVStorage(
namespace="entities",
workspace="workspace1",
global_config=global_config,
embedding_func=mock_embedding_func,
)
storage2 = JsonKVStorage(
namespace="entities",
workspace="workspace2",
global_config=global_config,
embedding_func=mock_embedding_func,
)
# Initialize both storages
await storage1.initialize()
await storage2.initialize()
print(" Storage1 created: workspace=workspace1, namespace=entities")
print(" Storage2 created: workspace=workspace2, namespace=entities")
# Test 10.2: Write different data to each storage
print("\nTest 10.2: Write different data to each storage")
# Write to storage1 (upsert expects dict[str, dict])
await storage1.upsert(
{
"entity1": {
"content": "Data from workspace1 - AI Research",
"type": "entity",
},
"entity2": {
"content": "Data from workspace1 - Machine Learning",
"type": "entity",
},
}
)
print(" Written to storage1: entity1, entity2")
# Persist data to disk
await storage1.index_done_callback()
print(" Persisted storage1 data to disk")
# Write to storage2
await storage2.upsert(
{
"entity1": {
"content": "Data from workspace2 - Deep Learning",
"type": "entity",
},
"entity2": {
"content": "Data from workspace2 - Neural Networks",
"type": "entity",
},
}
)
print(" Written to storage2: entity1, entity2")
# Persist data to disk
await storage2.index_done_callback()
print(" Persisted storage2 data to disk")
# Test 10.3: Read data from each storage and verify isolation
print("\nTest 10.3: Read data and verify isolation")
# Read from storage1
result1_entity1 = await storage1.get_by_id("entity1")
result1_entity2 = await storage1.get_by_id("entity2")
# Read from storage2
result2_entity1 = await storage2.get_by_id("entity1")
result2_entity2 = await storage2.get_by_id("entity2")
print(f" Storage1 entity1: {result1_entity1}")
print(f" Storage1 entity2: {result1_entity2}")
print(f" Storage2 entity1: {result2_entity1}")
print(f" Storage2 entity2: {result2_entity2}")
# Verify isolation (get_by_id returns dict)
assert result1_entity1 is not None, "Storage1 entity1 should not be None"
assert result1_entity2 is not None, "Storage1 entity2 should not be None"
assert result2_entity1 is not None, "Storage2 entity1 should not be None"
assert result2_entity2 is not None, "Storage2 entity2 should not be None"
assert (
result1_entity1.get("content") == "Data from workspace1 - AI Research"
), "Storage1 entity1 content mismatch"
assert (
result1_entity2.get("content") == "Data from workspace1 - Machine Learning"
), "Storage1 entity2 content mismatch"
assert (
result2_entity1.get("content") == "Data from workspace2 - Deep Learning"
), "Storage2 entity1 content mismatch"
assert (
result2_entity2.get("content") == "Data from workspace2 - Neural Networks"
), "Storage2 entity2 content mismatch"
assert result1_entity1.get("content") != result2_entity1.get(
"content"
), "Storage1 and Storage2 entity1 should have different content"
assert result1_entity2.get("content") != result2_entity2.get(
"content"
), "Storage1 and Storage2 entity2 should have different content"
print("✅ PASSED: JsonKVStorage - Data Isolation")
print(
" Two storage instances correctly isolated: ws1 and ws2 have different data"
)
# Test 10.4: Verify file structure
print("\nTest 10.4: Verify file structure")
ws1_dir = Path(test_dir) / "workspace1"
ws2_dir = Path(test_dir) / "workspace2"
ws1_exists = ws1_dir.exists()
ws2_exists = ws2_dir.exists()
print(f" workspace1 directory exists: {ws1_exists}")
print(f" workspace2 directory exists: {ws2_exists}")
assert ws1_exists, "workspace1 directory should exist"
assert ws2_exists, "workspace2 directory should exist"
print("✅ PASSED: JsonKVStorage - File Structure")
print(f" Workspace directories correctly created: {ws1_dir} and {ws2_dir}")
finally:
# Cleanup test directory (unless keep_test_artifacts is set)
if os.path.exists(test_dir) and not keep_test_artifacts:
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")
elif keep_test_artifacts:
print(f"\n Kept test directory for inspection: {test_dir}")
# =============================================================================
# Test 11: LightRAG End-to-End Integration Test
# =============================================================================
@pytest.mark.offline
async def test_lightrag_end_to_end_workspace_isolation(keep_test_artifacts):
"""
End-to-end test: Create two LightRAG instances with different workspaces,
insert different data, and verify file separation.
Uses mock LLM and embedding functions to avoid external API calls.
"""
# Purpose: Validate that full LightRAG flows keep artifacts scoped per workspace.
# Scope: LightRAG.initialize_storages + ainsert side effects plus filesystem
# verification for generated storage files.
print("\n" + "=" * 60)
print("TEST 11: LightRAG End-to-End Workspace Isolation")
print("=" * 60)
# Create temporary test directory under project temp/
test_dir = str(
Path(__file__).parent.parent
/ "temp/test_lightrag_end_to_end_workspace_isolation"
)
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
print(f"\n Using test directory: {test_dir}")
try:
# Factory function to create different mock LLM functions for each workspace
def create_mock_llm_func(workspace_name):
"""Create a mock LLM function that returns different content based on workspace"""
async def mock_llm_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
# Return different responses based on workspace
# Format: entity<|#|>entity_name<|#|>entity_type<|#|>entity_description
# Format: relation<|#|>source_entity<|#|>target_entity<|#|>keywords<|#|>description
if workspace_name == "project_a":
return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science focused on creating intelligent machines.
entity<|#|>Machine Learning<|#|>concept<|#|>Machine Learning is a subset of AI that enables systems to learn from data.
relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset, related field<|#|>Machine Learning is a key component and subset of Artificial Intelligence.
<|COMPLETE|>"""
else: # project_b
return """entity<|#|>Deep Learning<|#|>concept<|#|>Deep Learning is a subset of machine learning using neural networks with multiple layers.
entity<|#|>Neural Networks<|#|>concept<|#|>Neural Networks are computing systems inspired by biological neural networks.
relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Learning uses multiple layers of Neural Networks to learn representations.
<|COMPLETE|>"""
return mock_llm_func
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Test 11.1: Create two LightRAG instances with different workspaces
print("\nTest 11.1: Create two LightRAG instances with different workspaces")
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc, Tokenizer
# Create different mock LLM functions for each workspace
mock_llm_func_a = create_mock_llm_func("project_a")
mock_llm_func_b = create_mock_llm_func("project_b")
class _SimpleTokenizerImpl:
def encode(self, content: str) -> list[int]:
return [ord(ch) for ch in content]
def decode(self, tokens: list[int]) -> str:
return "".join(chr(t) for t in tokens)
tokenizer = Tokenizer("mock-tokenizer", _SimpleTokenizerImpl())
rag1 = LightRAG(
working_dir=test_dir,
workspace="project_a",
llm_model_func=mock_llm_func_a,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
rag2 = LightRAG(
working_dir=test_dir,
workspace="project_b",
llm_model_func=mock_llm_func_b,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
# Initialize storages
await rag1.initialize_storages()
await rag2.initialize_storages()
print(" RAG1 created: workspace=project_a")
print(" RAG2 created: workspace=project_b")
# Test 11.2: Insert different data to each RAG instance (CONCURRENTLY)
print("\nTest 11.2: Insert different data to each RAG instance (concurrently)")
text_for_project_a = "This document is about Artificial Intelligence and Machine Learning. AI is transforming the world."
text_for_project_b = "This document is about Deep Learning and Neural Networks. Deep learning uses multiple layers."
# Insert to both projects concurrently to test workspace isolation under concurrent load
print(" Starting concurrent insert operations...")
start_time = time.time()
await asyncio.gather(
rag1.ainsert(text_for_project_a), rag2.ainsert(text_for_project_b)
)
elapsed_time = time.time() - start_time
print(f" Inserted to project_a: {len(text_for_project_a)} chars (concurrent)")
print(f" Inserted to project_b: {len(text_for_project_b)} chars (concurrent)")
print(f" Total concurrent execution time: {elapsed_time:.3f}s")
# Test 11.3: Verify file structure
print("\nTest 11.3: Verify workspace directory structure")
project_a_dir = Path(test_dir) / "project_a"
project_b_dir = Path(test_dir) / "project_b"
project_a_exists = project_a_dir.exists()
project_b_exists = project_b_dir.exists()
print(f" project_a directory: {project_a_dir}")
print(f" project_a exists: {project_a_exists}")
print(f" project_b directory: {project_b_dir}")
print(f" project_b exists: {project_b_exists}")
assert project_a_exists, "project_a directory should exist"
assert project_b_exists, "project_b directory should exist"
# List files in each directory
print("\n Files in project_a/:")
for file in sorted(project_a_dir.glob("*")):
if file.is_file():
size = file.stat().st_size
print(f" - {file.name} ({size} bytes)")
print("\n Files in project_b/:")
for file in sorted(project_b_dir.glob("*")):
if file.is_file():
size = file.stat().st_size
print(f" - {file.name} ({size} bytes)")
print("✅ PASSED: LightRAG E2E - File Structure")
print(" Workspace directories correctly created and separated")
# Test 11.4: Verify data isolation by checking file contents
print("\nTest 11.4: Verify data isolation (check file contents)")
# Check if full_docs storage files exist and contain different content
docs_a_file = project_a_dir / "kv_store_full_docs.json"
docs_b_file = project_b_dir / "kv_store_full_docs.json"
if docs_a_file.exists() and docs_b_file.exists():
import json
with open(docs_a_file, "r") as f:
docs_a_content = json.load(f)
with open(docs_b_file, "r") as f:
docs_b_content = json.load(f)
print(f" project_a doc count: {len(docs_a_content)}")
print(f" project_b doc count: {len(docs_b_content)}")
# Verify they contain different data
assert (
docs_a_content != docs_b_content
), "Document storage not properly isolated"
# Verify each workspace contains its own text content
docs_a_str = json.dumps(docs_a_content)
docs_b_str = json.dumps(docs_b_content)
# Check project_a contains its text and NOT project_b's text
assert (
"Artificial Intelligence" in docs_a_str
), "project_a should contain 'Artificial Intelligence'"
assert (
"Machine Learning" in docs_a_str
), "project_a should contain 'Machine Learning'"
assert (
"Deep Learning" not in docs_a_str
), "project_a should NOT contain 'Deep Learning' from project_b"
assert (
"Neural Networks" not in docs_a_str
), "project_a should NOT contain 'Neural Networks' from project_b"
# Check project_b contains its text and NOT project_a's text
assert (
"Deep Learning" in docs_b_str
), "project_b should contain 'Deep Learning'"
assert (
"Neural Networks" in docs_b_str
), "project_b should contain 'Neural Networks'"
assert (
"Artificial Intelligence" not in docs_b_str
), "project_b should NOT contain 'Artificial Intelligence' from project_a"
# Note: "Machine Learning" might appear in project_b's text, so we skip that check
print("✅ PASSED: LightRAG E2E - Data Isolation")
print(" Document storage correctly isolated between workspaces")
print(" project_a contains only its own data")
print(" project_b contains only its own data")
else:
print(" Document storage files not found (may not be created yet)")
print("✅ PASSED: LightRAG E2E - Data Isolation")
print(" Skipped file content check (files not created)")
print("\n ✓ Test complete - workspace isolation verified at E2E level")
finally:
# Cleanup test directory (unless keep_test_artifacts is set)
if os.path.exists(test_dir) and not keep_test_artifacts:
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")
elif keep_test_artifacts:
print(f"\n Kept test directory for inspection: {test_dir}")