Files
lightrag/lightrag/api/config.py
yangdx 4ab4a7ac94 Allow embedding models to use provider defaults when unspecified
- Set EMBEDDING_MODEL default to None
- Pass model param only when provided
- Let providers use their own defaults
- Fix lollms embed function params
- Add ollama embed_model default param
2025-11-28 16:57:33 +08:00

554 lines
19 KiB
Python

"""
Configs for the LightRAG API.
"""
import os
import argparse
import logging
from dotenv import load_dotenv
from lightrag.utils import get_env_value
from lightrag.llm.binding_options import (
GeminiEmbeddingOptions,
GeminiLLMOptions,
OllamaEmbeddingOptions,
OllamaLLMOptions,
OpenAILLMOptions,
)
from lightrag.base import OllamaServerInfos
import sys
from lightrag.constants import (
DEFAULT_WOKERS,
DEFAULT_TIMEOUT,
DEFAULT_TOP_K,
DEFAULT_CHUNK_TOP_K,
DEFAULT_HISTORY_TURNS,
DEFAULT_MAX_ENTITY_TOKENS,
DEFAULT_MAX_RELATION_TOKENS,
DEFAULT_MAX_TOTAL_TOKENS,
DEFAULT_COSINE_THRESHOLD,
DEFAULT_RELATED_CHUNK_NUMBER,
DEFAULT_MIN_RERANK_SCORE,
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
DEFAULT_MAX_ASYNC,
DEFAULT_SUMMARY_MAX_TOKENS,
DEFAULT_SUMMARY_LENGTH_RECOMMENDED,
DEFAULT_SUMMARY_CONTEXT_SIZE,
DEFAULT_SUMMARY_LANGUAGE,
DEFAULT_EMBEDDING_FUNC_MAX_ASYNC,
DEFAULT_EMBEDDING_BATCH_NUM,
DEFAULT_OLLAMA_MODEL_NAME,
DEFAULT_OLLAMA_MODEL_TAG,
DEFAULT_RERANK_BINDING,
DEFAULT_ENTITY_TYPES,
)
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
ollama_server_infos = OllamaServerInfos()
class DefaultRAGStorageConfig:
KV_STORAGE = "JsonKVStorage"
VECTOR_STORAGE = "NanoVectorDBStorage"
GRAPH_STORAGE = "NetworkXStorage"
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
"gemini": os.getenv(
"LLM_BINDING_HOST", "https://generativelanguage.googleapis.com"
),
}
return default_hosts.get(
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
) # fallback to ollama if unknown
def parse_args() -> argparse.Namespace:
"""
Parse command line arguments with environment variable fallback
Args:
is_uvicorn_mode: Whether running under uvicorn mode
Returns:
argparse.Namespace: Parsed arguments
"""
parser = argparse.ArgumentParser(description="LightRAG API Server")
# Server configuration
parser.add_argument(
"--host",
default=get_env_value("HOST", "0.0.0.0"),
help="Server host (default: from env or 0.0.0.0)",
)
parser.add_argument(
"--port",
type=int,
default=get_env_value("PORT", 9621, int),
help="Server port (default: from env or 9621)",
)
# Directory configuration
parser.add_argument(
"--working-dir",
default=get_env_value("WORKING_DIR", "./rag_storage"),
help="Working directory for RAG storage (default: from env or ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default=get_env_value("INPUT_DIR", "./inputs"),
help="Directory containing input documents (default: from env or ./inputs)",
)
parser.add_argument(
"--timeout",
default=get_env_value("TIMEOUT", DEFAULT_TIMEOUT, int, special_none=True),
type=int,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
)
# RAG configuration
parser.add_argument(
"--max-async",
type=int,
default=get_env_value("MAX_ASYNC", DEFAULT_MAX_ASYNC, int),
help=f"Maximum async operations (default: from env or {DEFAULT_MAX_ASYNC})",
)
parser.add_argument(
"--summary-max-tokens",
type=int,
default=get_env_value("SUMMARY_MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS, int),
help=f"Maximum token size for entity/relation summary(default: from env or {DEFAULT_SUMMARY_MAX_TOKENS})",
)
parser.add_argument(
"--summary-context-size",
type=int,
default=get_env_value(
"SUMMARY_CONTEXT_SIZE", DEFAULT_SUMMARY_CONTEXT_SIZE, int
),
help=f"LLM Summary Context size (default: from env or {DEFAULT_SUMMARY_CONTEXT_SIZE})",
)
parser.add_argument(
"--summary-length-recommended",
type=int,
default=get_env_value(
"SUMMARY_LENGTH_RECOMMENDED", DEFAULT_SUMMARY_LENGTH_RECOMMENDED, int
),
help=f"LLM Summary Context size (default: from env or {DEFAULT_SUMMARY_LENGTH_RECOMMENDED})",
)
# Logging configuration
parser.add_argument(
"--log-level",
default=get_env_value("LOG_LEVEL", "INFO"),
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: from env or INFO)",
)
parser.add_argument(
"--verbose",
action="store_true",
default=get_env_value("VERBOSE", False, bool),
help="Enable verbose debug output(only valid for DEBUG log-level)",
)
parser.add_argument(
"--key",
type=str,
default=get_env_value("LIGHTRAG_API_KEY", None),
help="API key for authentication. This protects lightrag server against unauthorized access",
)
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
default=get_env_value("SSL", False, bool),
help="Enable HTTPS (default: from env or False)",
)
parser.add_argument(
"--ssl-certfile",
default=get_env_value("SSL_CERTFILE", None),
help="Path to SSL certificate file (required if --ssl is enabled)",
)
parser.add_argument(
"--ssl-keyfile",
default=get_env_value("SSL_KEYFILE", None),
help="Path to SSL private key file (required if --ssl is enabled)",
)
# Ollama model configuration
parser.add_argument(
"--simulated-model-name",
type=str,
default=get_env_value("OLLAMA_EMULATING_MODEL_NAME", DEFAULT_OLLAMA_MODEL_NAME),
help="Name for the simulated Ollama model (default: from env or lightrag)",
)
parser.add_argument(
"--simulated-model-tag",
type=str,
default=get_env_value("OLLAMA_EMULATING_MODEL_TAG", DEFAULT_OLLAMA_MODEL_TAG),
help="Tag for the simulated Ollama model (default: from env or latest)",
)
# Namespace
parser.add_argument(
"--workspace",
type=str,
default=get_env_value("WORKSPACE", ""),
help="Default workspace for all storage",
)
# Server workers configuration
parser.add_argument(
"--workers",
type=int,
default=get_env_value("WORKERS", DEFAULT_WOKERS, int),
help="Number of worker processes (default: from env or 1)",
)
# LLM and embedding bindings
parser.add_argument(
"--llm-binding",
type=str,
default=get_env_value("LLM_BINDING", "ollama"),
choices=[
"lollms",
"ollama",
"openai",
"openai-ollama",
"azure_openai",
"aws_bedrock",
"gemini",
],
help="LLM binding type (default: from env or ollama)",
)
parser.add_argument(
"--embedding-binding",
type=str,
default=get_env_value("EMBEDDING_BINDING", "ollama"),
choices=[
"lollms",
"ollama",
"openai",
"azure_openai",
"aws_bedrock",
"jina",
"gemini",
],
help="Embedding binding type (default: from env or ollama)",
)
parser.add_argument(
"--rerank-binding",
type=str,
default=get_env_value("RERANK_BINDING", DEFAULT_RERANK_BINDING),
choices=["null", "cohere", "jina", "aliyun"],
help=f"Rerank binding type (default: from env or {DEFAULT_RERANK_BINDING})",
)
# Document loading engine configuration
parser.add_argument(
"--docling",
action="store_true",
default=False,
help="Enable DOCLING document loading engine (default: from env or DEFAULT)",
)
# Conditionally add binding options defined in binding_options module
# This will add command line arguments for all binding options (e.g., --ollama-embedding-num_ctx)
# and corresponding environment variables (e.g., OLLAMA_EMBEDDING_NUM_CTX)
if "--llm-binding" in sys.argv:
try:
idx = sys.argv.index("--llm-binding")
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == "ollama":
OllamaLLMOptions.add_args(parser)
except IndexError:
pass
elif os.environ.get("LLM_BINDING") == "ollama":
OllamaLLMOptions.add_args(parser)
if "--embedding-binding" in sys.argv:
try:
idx = sys.argv.index("--embedding-binding")
if idx + 1 < len(sys.argv):
if sys.argv[idx + 1] == "ollama":
OllamaEmbeddingOptions.add_args(parser)
elif sys.argv[idx + 1] == "gemini":
GeminiEmbeddingOptions.add_args(parser)
except IndexError:
pass
else:
env_embedding_binding = os.environ.get("EMBEDDING_BINDING")
if env_embedding_binding == "ollama":
OllamaEmbeddingOptions.add_args(parser)
elif env_embedding_binding == "gemini":
GeminiEmbeddingOptions.add_args(parser)
# Add OpenAI LLM options when llm-binding is openai or azure_openai
if "--llm-binding" in sys.argv:
try:
idx = sys.argv.index("--llm-binding")
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] in [
"openai",
"azure_openai",
]:
OpenAILLMOptions.add_args(parser)
except IndexError:
pass
elif os.environ.get("LLM_BINDING") in ["openai", "azure_openai"]:
OpenAILLMOptions.add_args(parser)
if "--llm-binding" in sys.argv:
try:
idx = sys.argv.index("--llm-binding")
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == "gemini":
GeminiLLMOptions.add_args(parser)
except IndexError:
pass
elif os.environ.get("LLM_BINDING") == "gemini":
GeminiLLMOptions.add_args(parser)
args = parser.parse_args()
# convert relative path to absolute path
args.working_dir = os.path.abspath(args.working_dir)
args.input_dir = os.path.abspath(args.input_dir)
# Inject storage configuration from environment variables
args.kv_storage = get_env_value(
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
)
args.doc_status_storage = get_env_value(
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
)
args.graph_storage = get_env_value(
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
)
args.vector_storage = get_env_value(
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
)
# Get MAX_PARALLEL_INSERT from environment
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
# Get MAX_GRAPH_NODES from environment
args.max_graph_nodes = get_env_value("MAX_GRAPH_NODES", 1000, int)
# Handle openai-ollama special case
if args.llm_binding == "openai-ollama":
args.llm_binding = "openai"
args.embedding_binding = "ollama"
# Ollama ctx_num
args.ollama_num_ctx = get_env_value("OLLAMA_NUM_CTX", 32768, int)
args.llm_binding_host = get_env_value(
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
)
args.embedding_binding_host = get_env_value(
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
)
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
# Inject model configuration
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
# EMBEDDING_MODEL defaults to None - each binding will use its own default model
# e.g., OpenAI uses "text-embedding-3-small", Jina uses "jina-embeddings-v4"
args.embedding_model = get_env_value("EMBEDDING_MODEL", None, special_none=True)
# EMBEDDING_DIM defaults to None - each binding will use its own default dimension
# Value is inherited from provider defaults via wrap_embedding_func_with_attrs decorator
args.embedding_dim = get_env_value("EMBEDDING_DIM", None, int, special_none=True)
args.embedding_send_dim = get_env_value("EMBEDDING_SEND_DIM", False, bool)
# Inject chunk configuration
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
# Inject LLM cache configuration
args.enable_llm_cache_for_extract = get_env_value(
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
)
args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool)
# Set document_loading_engine from --docling flag
if args.docling:
args.document_loading_engine = "DOCLING"
else:
args.document_loading_engine = get_env_value(
"DOCUMENT_LOADING_ENGINE", "DEFAULT"
)
# PDF decryption password
args.pdf_decrypt_password = get_env_value("PDF_DECRYPT_PASSWORD", None)
# Add environment variables that were previously read directly
args.cors_origins = get_env_value("CORS_ORIGINS", "*")
args.summary_language = get_env_value("SUMMARY_LANGUAGE", DEFAULT_SUMMARY_LANGUAGE)
args.entity_types = get_env_value("ENTITY_TYPES", DEFAULT_ENTITY_TYPES, list)
args.whitelist_paths = get_env_value("WHITELIST_PATHS", "/health,/api/*")
# For JWT Auth
args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "")
args.token_secret = get_env_value("TOKEN_SECRET", "lightrag-jwt-default-secret")
args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 48, int)
args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 24, int)
args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
# Rerank model configuration
args.rerank_model = get_env_value("RERANK_MODEL", None)
args.rerank_binding_host = get_env_value("RERANK_BINDING_HOST", None)
args.rerank_binding_api_key = get_env_value("RERANK_BINDING_API_KEY", None)
# Note: rerank_binding is already set by argparse, no need to override from env
# Min rerank score configuration
args.min_rerank_score = get_env_value(
"MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float
)
# Query configuration
args.history_turns = get_env_value("HISTORY_TURNS", DEFAULT_HISTORY_TURNS, int)
args.top_k = get_env_value("TOP_K", DEFAULT_TOP_K, int)
args.chunk_top_k = get_env_value("CHUNK_TOP_K", DEFAULT_CHUNK_TOP_K, int)
args.max_entity_tokens = get_env_value(
"MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int
)
args.max_relation_tokens = get_env_value(
"MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int
)
args.max_total_tokens = get_env_value(
"MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int
)
args.cosine_threshold = get_env_value(
"COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, float
)
args.related_chunk_number = get_env_value(
"RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int
)
# Add missing environment variables for health endpoint
args.force_llm_summary_on_merge = get_env_value(
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
)
args.embedding_func_max_async = get_env_value(
"EMBEDDING_FUNC_MAX_ASYNC", DEFAULT_EMBEDDING_FUNC_MAX_ASYNC, int
)
args.embedding_batch_num = get_env_value(
"EMBEDDING_BATCH_NUM", DEFAULT_EMBEDDING_BATCH_NUM, int
)
# Embedding token limit configuration
args.embedding_token_limit = get_env_value(
"EMBEDDING_TOKEN_LIMIT", None, int, special_none=True
)
ollama_server_infos.LIGHTRAG_NAME = args.simulated_model_name
ollama_server_infos.LIGHTRAG_TAG = args.simulated_model_tag
return args
def update_uvicorn_mode_config():
# If in uvicorn mode and workers > 1, force it to 1 and log warning
if global_args.workers > 1:
original_workers = global_args.workers
global_args.workers = 1
# Log warning directly here
logging.warning(
f">> Forcing workers=1 in uvicorn mode(Ignoring workers={original_workers})"
)
# Global configuration with lazy initialization
_global_args = None
_initialized = False
def initialize_config(args=None, force=False):
"""Initialize global configuration
This function allows explicit initialization of the configuration,
which is useful for programmatic usage, testing, or embedding LightRAG
in other applications.
Args:
args: Pre-parsed argparse.Namespace or None to parse from sys.argv
force: Force re-initialization even if already initialized
Returns:
argparse.Namespace: The configured arguments
Example:
# Use parsed command line arguments (default)
initialize_config()
# Use custom configuration programmatically
custom_args = argparse.Namespace(
host='localhost',
port=8080,
working_dir='./custom_rag',
# ... other config
)
initialize_config(custom_args)
"""
global _global_args, _initialized
if _initialized and not force:
return _global_args
_global_args = args if args is not None else parse_args()
_initialized = True
return _global_args
def get_config():
"""Get global configuration, auto-initializing if needed
Returns:
argparse.Namespace: The configured arguments
"""
if not _initialized:
initialize_config()
return _global_args
class _GlobalArgsProxy:
"""Proxy object that auto-initializes configuration on first access
This maintains backward compatibility with existing code while
allowing programmatic control over initialization timing.
"""
def __getattr__(self, name):
if not _initialized:
initialize_config()
return getattr(_global_args, name)
def __setattr__(self, name, value):
if not _initialized:
initialize_config()
setattr(_global_args, name, value)
def __repr__(self):
if not _initialized:
return "<GlobalArgsProxy: Not initialized>"
return repr(_global_args)
# Create proxy instance for backward compatibility
# Existing code like `from config import global_args` continues to work
# The proxy will auto-initialize on first attribute access
global_args = _GlobalArgsProxy()