- Use check_table_exists DB method - Update mocks for keyset pagination - Enforce error on dimension mismatch - Remove deprecated module patches - Verify workspace migration isolation
857 lines
31 KiB
Python
857 lines
31 KiB
Python
import pytest
|
|
from unittest.mock import patch, AsyncMock
|
|
import numpy as np
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.postgres_impl import (
|
|
PGVectorStorage,
|
|
)
|
|
from lightrag.namespace import NameSpace
|
|
|
|
|
|
# Mock PostgreSQLDB
|
|
@pytest.fixture
|
|
def mock_pg_db():
|
|
"""Mock PostgreSQL database connection"""
|
|
db = AsyncMock()
|
|
db.workspace = "test_workspace"
|
|
|
|
# Mock query responses with multirows support
|
|
async def mock_query(sql, params=None, multirows=False, **kwargs):
|
|
# Default return value
|
|
if multirows:
|
|
return [] # Return empty list for multirows
|
|
return {"exists": False, "count": 0}
|
|
|
|
# Mock for execute that mimics PostgreSQLDB.execute() behavior
|
|
async def mock_execute(sql, data=None, **kwargs):
|
|
"""
|
|
Mock that mimics PostgreSQLDB.execute() behavior:
|
|
- Accepts data as dict[str, Any] | None (second parameter)
|
|
- Internally converts dict.values() to tuple for AsyncPG
|
|
"""
|
|
# Mimic real execute() which accepts dict and converts to tuple
|
|
if data is not None and not isinstance(data, dict):
|
|
raise TypeError(
|
|
f"PostgreSQLDB.execute() expects data as dict, got {type(data).__name__}"
|
|
)
|
|
return None
|
|
|
|
db.query = AsyncMock(side_effect=mock_query)
|
|
db.execute = AsyncMock(side_effect=mock_execute)
|
|
|
|
return db
|
|
|
|
|
|
# Mock get_data_init_lock to avoid async lock issues in tests
|
|
@pytest.fixture(autouse=True)
|
|
def mock_data_init_lock():
|
|
with patch("lightrag.kg.postgres_impl.get_data_init_lock") as mock_lock:
|
|
mock_lock_ctx = AsyncMock()
|
|
mock_lock.return_value = mock_lock_ctx
|
|
yield mock_lock
|
|
|
|
|
|
# Mock ClientManager
|
|
@pytest.fixture
|
|
def mock_client_manager(mock_pg_db):
|
|
with patch("lightrag.kg.postgres_impl.ClientManager") as mock_manager:
|
|
mock_manager.get_client = AsyncMock(return_value=mock_pg_db)
|
|
mock_manager.release_client = AsyncMock()
|
|
yield mock_manager
|
|
|
|
|
|
# Mock Embedding function
|
|
@pytest.fixture
|
|
def mock_embedding_func():
|
|
async def embed_func(texts, **kwargs):
|
|
return np.array([[0.1] * 768 for _ in texts])
|
|
|
|
func = EmbeddingFunc(embedding_dim=768, func=embed_func, model_name="test_model")
|
|
return func
|
|
|
|
|
|
async def test_postgres_table_naming(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""Test if table name is correctly generated with model suffix"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=mock_embedding_func,
|
|
workspace="test_ws",
|
|
)
|
|
|
|
# Verify table name contains model suffix
|
|
expected_suffix = "test_model_768d"
|
|
assert expected_suffix in storage.table_name
|
|
assert storage.table_name == f"LIGHTRAG_VDB_CHUNKS_{expected_suffix}"
|
|
|
|
# Verify legacy table name
|
|
assert storage.legacy_table_name == "LIGHTRAG_VDB_CHUNKS"
|
|
|
|
|
|
async def test_postgres_migration_trigger(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""Test if migration logic is triggered correctly"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=mock_embedding_func,
|
|
workspace="test_ws",
|
|
)
|
|
|
|
# Setup mocks for migration scenario
|
|
# 1. New table does not exist, legacy table exists
|
|
async def mock_check_table_exists(table_name):
|
|
return table_name == storage.legacy_table_name
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
# 2. Legacy table has 100 records
|
|
mock_rows = [
|
|
{"id": f"test_id_{i}", "content": f"content_{i}", "workspace": "test_ws"}
|
|
for i in range(100)
|
|
]
|
|
migration_state = {"new_table_count": 0}
|
|
|
|
async def mock_query(sql, params=None, multirows=False, **kwargs):
|
|
if "COUNT(*)" in sql:
|
|
sql_upper = sql.upper()
|
|
legacy_table = storage.legacy_table_name.upper()
|
|
new_table = storage.table_name.upper()
|
|
is_new_table = new_table in sql_upper
|
|
is_legacy_table = legacy_table in sql_upper and not is_new_table
|
|
|
|
if is_new_table:
|
|
return {"count": migration_state["new_table_count"]}
|
|
if is_legacy_table:
|
|
return {"count": 100}
|
|
return {"count": 0}
|
|
elif multirows and "SELECT *" in sql:
|
|
# Mock batch fetch for migration using keyset pagination
|
|
# New pattern: WHERE workspace = $1 AND id > $2 ORDER BY id LIMIT $3
|
|
# or first batch: WHERE workspace = $1 ORDER BY id LIMIT $2
|
|
if "WHERE workspace" in sql:
|
|
if "id >" in sql:
|
|
# Keyset pagination: params = [workspace, last_id, limit]
|
|
last_id = params[1] if len(params) > 1 else None
|
|
# Find rows after last_id
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[2] if len(params) > 2 else 500
|
|
else:
|
|
# First batch (no last_id): params = [workspace, limit]
|
|
start_idx = 0
|
|
limit = params[1] if len(params) > 1 else 500
|
|
else:
|
|
# No workspace filter with keyset
|
|
if "id >" in sql:
|
|
last_id = params[0] if params else None
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[1] if len(params) > 1 else 500
|
|
else:
|
|
start_idx = 0
|
|
limit = params[0] if params else 500
|
|
end = min(start_idx + limit, len(mock_rows))
|
|
return mock_rows[start_idx:end]
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query)
|
|
|
|
# Track migration through _run_with_retry calls
|
|
migration_executed = []
|
|
|
|
async def mock_run_with_retry(operation, **kwargs):
|
|
# Track that migration batch operation was called
|
|
migration_executed.append(True)
|
|
migration_state["new_table_count"] = 100
|
|
return None
|
|
|
|
mock_pg_db._run_with_retry = AsyncMock(side_effect=mock_run_with_retry)
|
|
|
|
with patch(
|
|
"lightrag.kg.postgres_impl.PGVectorStorage._pg_create_table", AsyncMock()
|
|
):
|
|
# Initialize storage (should trigger migration)
|
|
await storage.initialize()
|
|
|
|
# Verify migration was executed by checking _run_with_retry was called
|
|
# (batch migration uses _run_with_retry with executemany)
|
|
assert len(migration_executed) > 0, "Migration should have been executed"
|
|
|
|
|
|
async def test_postgres_no_migration_needed(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""Test scenario where new table already exists (no migration needed)"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=mock_embedding_func,
|
|
workspace="test_ws",
|
|
)
|
|
|
|
# Mock: new table already exists
|
|
async def mock_check_table_exists(table_name):
|
|
return table_name == storage.table_name
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
with patch(
|
|
"lightrag.kg.postgres_impl.PGVectorStorage._pg_create_table", AsyncMock()
|
|
) as mock_create:
|
|
await storage.initialize()
|
|
|
|
# Verify no table creation was attempted
|
|
mock_create.assert_not_called()
|
|
|
|
|
|
async def test_scenario_1_new_workspace_creation(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Scenario 1: New workspace creation
|
|
|
|
Expected behavior:
|
|
- No legacy table exists
|
|
- Directly create new table with model suffix
|
|
- No migration needed
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=3072,
|
|
func=mock_embedding_func.func,
|
|
model_name="text-embedding-3-large",
|
|
)
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="new_workspace",
|
|
)
|
|
|
|
# Mock: neither table exists
|
|
async def mock_check_table_exists(table_name):
|
|
return False
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
with patch(
|
|
"lightrag.kg.postgres_impl.PGVectorStorage._pg_create_table", AsyncMock()
|
|
) as mock_create:
|
|
await storage.initialize()
|
|
|
|
# Verify table name format
|
|
assert "text_embedding_3_large_3072d" in storage.table_name
|
|
|
|
# Verify new table creation was called
|
|
mock_create.assert_called_once()
|
|
call_args = mock_create.call_args
|
|
assert (
|
|
call_args[0][1] == storage.table_name
|
|
) # table_name is second positional arg
|
|
|
|
|
|
async def test_scenario_2_legacy_upgrade_migration(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Scenario 2: Upgrade from legacy version
|
|
|
|
Expected behavior:
|
|
- Legacy table exists (without model suffix)
|
|
- New table doesn't exist
|
|
- Automatically migrate data to new table with suffix
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
func=mock_embedding_func.func,
|
|
model_name="text-embedding-ada-002",
|
|
)
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="legacy_workspace",
|
|
)
|
|
|
|
# Mock: only legacy table exists
|
|
async def mock_check_table_exists(table_name):
|
|
return table_name == storage.legacy_table_name
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
# Mock: legacy table has 50 records
|
|
mock_rows = [
|
|
{
|
|
"id": f"legacy_id_{i}",
|
|
"content": f"legacy_content_{i}",
|
|
"workspace": "legacy_workspace",
|
|
}
|
|
for i in range(50)
|
|
]
|
|
|
|
# Track which queries have been made for proper response
|
|
query_history = []
|
|
migration_state = {"new_table_count": 0}
|
|
|
|
async def mock_query(sql, params=None, multirows=False, **kwargs):
|
|
query_history.append(sql)
|
|
|
|
if "COUNT(*)" in sql:
|
|
# Determine table type:
|
|
# - Legacy: contains base name but NOT model suffix
|
|
# - New: contains model suffix (e.g., text_embedding_ada_002_1536d)
|
|
sql_upper = sql.upper()
|
|
base_name = storage.legacy_table_name.upper()
|
|
|
|
# Check if this is querying the new table (has model suffix)
|
|
has_model_suffix = storage.table_name.upper() in sql_upper
|
|
|
|
is_legacy_table = base_name in sql_upper and not has_model_suffix
|
|
has_workspace_filter = "WHERE workspace" in sql
|
|
|
|
if is_legacy_table and has_workspace_filter:
|
|
# Count for legacy table with workspace filter (before migration)
|
|
return {"count": 50}
|
|
elif is_legacy_table and not has_workspace_filter:
|
|
# Total count for legacy table
|
|
return {"count": 50}
|
|
else:
|
|
# New table count (before/after migration)
|
|
return {"count": migration_state["new_table_count"]}
|
|
elif multirows and "SELECT *" in sql:
|
|
# Mock batch fetch for migration using keyset pagination
|
|
# New pattern: WHERE workspace = $1 AND id > $2 ORDER BY id LIMIT $3
|
|
# or first batch: WHERE workspace = $1 ORDER BY id LIMIT $2
|
|
if "WHERE workspace" in sql:
|
|
if "id >" in sql:
|
|
# Keyset pagination: params = [workspace, last_id, limit]
|
|
last_id = params[1] if len(params) > 1 else None
|
|
# Find rows after last_id
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[2] if len(params) > 2 else 500
|
|
else:
|
|
# First batch (no last_id): params = [workspace, limit]
|
|
start_idx = 0
|
|
limit = params[1] if len(params) > 1 else 500
|
|
else:
|
|
# No workspace filter with keyset
|
|
if "id >" in sql:
|
|
last_id = params[0] if params else None
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[1] if len(params) > 1 else 500
|
|
else:
|
|
start_idx = 0
|
|
limit = params[0] if params else 500
|
|
end = min(start_idx + limit, len(mock_rows))
|
|
return mock_rows[start_idx:end]
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query)
|
|
|
|
# Track migration through _run_with_retry calls
|
|
migration_executed = []
|
|
|
|
async def mock_run_with_retry(operation, **kwargs):
|
|
# Track that migration batch operation was called
|
|
migration_executed.append(True)
|
|
migration_state["new_table_count"] = 50
|
|
return None
|
|
|
|
mock_pg_db._run_with_retry = AsyncMock(side_effect=mock_run_with_retry)
|
|
|
|
with patch(
|
|
"lightrag.kg.postgres_impl.PGVectorStorage._pg_create_table", AsyncMock()
|
|
) as mock_create:
|
|
await storage.initialize()
|
|
|
|
# Verify table name contains ada-002
|
|
assert "text_embedding_ada_002_1536d" in storage.table_name
|
|
|
|
# Verify migration was executed (batch migration uses _run_with_retry)
|
|
assert len(migration_executed) > 0, "Migration should have been executed"
|
|
mock_create.assert_called_once()
|
|
|
|
|
|
async def test_scenario_3_multi_model_coexistence(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Scenario 3: Multiple embedding models coexist
|
|
|
|
Expected behavior:
|
|
- Different embedding models create separate tables
|
|
- Tables are isolated by model suffix
|
|
- No interference between different models
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
# Workspace A: uses bge-small (768d)
|
|
embedding_func_a = EmbeddingFunc(
|
|
embedding_dim=768, func=mock_embedding_func.func, model_name="bge-small"
|
|
)
|
|
|
|
storage_a = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func_a,
|
|
workspace="workspace_a",
|
|
)
|
|
|
|
# Workspace B: uses bge-large (1024d)
|
|
async def embed_func_b(texts, **kwargs):
|
|
return np.array([[0.1] * 1024 for _ in texts])
|
|
|
|
embedding_func_b = EmbeddingFunc(
|
|
embedding_dim=1024, func=embed_func_b, model_name="bge-large"
|
|
)
|
|
|
|
storage_b = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func_b,
|
|
workspace="workspace_b",
|
|
)
|
|
|
|
# Verify different table names
|
|
assert storage_a.table_name != storage_b.table_name
|
|
assert "bge_small_768d" in storage_a.table_name
|
|
assert "bge_large_1024d" in storage_b.table_name
|
|
|
|
# Mock: both tables don't exist yet
|
|
async def mock_check_table_exists(table_name):
|
|
return False
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
with patch(
|
|
"lightrag.kg.postgres_impl.PGVectorStorage._pg_create_table", AsyncMock()
|
|
) as mock_create:
|
|
# Initialize both storages
|
|
await storage_a.initialize()
|
|
await storage_b.initialize()
|
|
|
|
# Verify two separate tables were created
|
|
assert mock_create.call_count == 2
|
|
|
|
# Verify table names are different
|
|
call_args_list = mock_create.call_args_list
|
|
table_names = [call[0][1] for call in call_args_list] # Second positional arg
|
|
assert len(set(table_names)) == 2 # Two unique table names
|
|
assert storage_a.table_name in table_names
|
|
assert storage_b.table_name in table_names
|
|
|
|
|
|
async def test_case1_empty_legacy_auto_cleanup(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Case 1a: Both new and legacy tables exist, but legacy is EMPTY
|
|
Expected: Automatically delete empty legacy table (safe cleanup)
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
func=mock_embedding_func.func,
|
|
model_name="test-model",
|
|
)
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="test_ws",
|
|
)
|
|
|
|
# Mock: Both tables exist
|
|
async def mock_check_table_exists(table_name):
|
|
return True # Both new and legacy exist
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
# Mock: Legacy table is empty (0 records)
|
|
async def mock_query(sql, params=None, multirows=False, **kwargs):
|
|
if "COUNT(*)" in sql:
|
|
if storage.legacy_table_name in sql:
|
|
return {"count": 0} # Empty legacy table
|
|
else:
|
|
return {"count": 100} # New table has data
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query)
|
|
|
|
with patch("lightrag.kg.postgres_impl.logger"):
|
|
await storage.initialize()
|
|
|
|
# Verify: Empty legacy table should be automatically cleaned up
|
|
# Empty tables are safe to delete without data loss risk
|
|
delete_calls = [
|
|
call
|
|
for call in mock_pg_db.execute.call_args_list
|
|
if call[0][0] and "DROP TABLE" in call[0][0]
|
|
]
|
|
assert len(delete_calls) >= 1, "Empty legacy table should be auto-deleted"
|
|
# Check if legacy table was dropped
|
|
dropped_table = storage.legacy_table_name
|
|
assert any(
|
|
dropped_table in str(call) for call in delete_calls
|
|
), f"Expected to drop empty legacy table '{dropped_table}'"
|
|
|
|
print(
|
|
f"✅ Case 1a: Empty legacy table '{dropped_table}' auto-deleted successfully"
|
|
)
|
|
|
|
|
|
async def test_case1_nonempty_legacy_warning(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Case 1b: Both new and legacy tables exist, and legacy HAS DATA
|
|
Expected: Log warning, do not delete legacy (preserve data)
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
func=mock_embedding_func.func,
|
|
model_name="test-model",
|
|
)
|
|
|
|
storage = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="test_ws",
|
|
)
|
|
|
|
# Mock: Both tables exist
|
|
async def mock_check_table_exists(table_name):
|
|
return True # Both new and legacy exist
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists)
|
|
|
|
# Mock: Legacy table has data (50 records)
|
|
async def mock_query(sql, params=None, multirows=False, **kwargs):
|
|
if "COUNT(*)" in sql:
|
|
if storage.legacy_table_name in sql:
|
|
return {"count": 50} # Legacy has data
|
|
else:
|
|
return {"count": 100} # New table has data
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query)
|
|
|
|
with patch("lightrag.kg.postgres_impl.logger"):
|
|
await storage.initialize()
|
|
|
|
# Verify: Legacy table with data should be preserved
|
|
# We never auto-delete tables that contain data to prevent accidental data loss
|
|
delete_calls = [
|
|
call
|
|
for call in mock_pg_db.execute.call_args_list
|
|
if call[0][0] and "DROP TABLE" in call[0][0]
|
|
]
|
|
# Check if legacy table was deleted (it should not be)
|
|
dropped_table = storage.legacy_table_name
|
|
legacy_deleted = any(dropped_table in str(call) for call in delete_calls)
|
|
assert not legacy_deleted, "Legacy table with data should NOT be auto-deleted"
|
|
|
|
print(
|
|
f"✅ Case 1b: Legacy table '{dropped_table}' with data preserved (warning only)"
|
|
)
|
|
|
|
|
|
async def test_case1_sequential_workspace_migration(
|
|
mock_client_manager, mock_pg_db, mock_embedding_func
|
|
):
|
|
"""
|
|
Case 1c: Sequential workspace migration (Multi-tenant scenario)
|
|
|
|
Critical bug fix verification:
|
|
Timeline:
|
|
1. Legacy table has workspace_a (3 records) + workspace_b (3 records)
|
|
2. Workspace A initializes first → Case 3 (only legacy exists) → migrates A's data
|
|
3. Workspace B initializes later → Case 3 (both tables exist, legacy has B's data) → should migrate B's data
|
|
4. Verify workspace B's data is correctly migrated to new table
|
|
|
|
This test verifies the migration logic correctly handles multi-tenant scenarios
|
|
where different workspaces migrate sequentially.
|
|
"""
|
|
config = {
|
|
"embedding_batch_num": 10,
|
|
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
|
|
}
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
embedding_dim=1536,
|
|
func=mock_embedding_func.func,
|
|
model_name="test-model",
|
|
)
|
|
|
|
# Mock data: Legacy table has 6 records total (3 from workspace_a, 3 from workspace_b)
|
|
mock_rows_a = [
|
|
{"id": f"a_{i}", "content": f"A content {i}", "workspace": "workspace_a"}
|
|
for i in range(3)
|
|
]
|
|
mock_rows_b = [
|
|
{"id": f"b_{i}", "content": f"B content {i}", "workspace": "workspace_b"}
|
|
for i in range(3)
|
|
]
|
|
|
|
# Track migration state
|
|
migration_state = {
|
|
"new_table_exists": False,
|
|
"workspace_a_migrated": False,
|
|
"workspace_a_migration_count": 0,
|
|
"workspace_b_migration_count": 0,
|
|
}
|
|
|
|
# Step 1: Simulate workspace_a initialization (Case 3 - only legacy exists)
|
|
# CRITICAL: Set db.workspace to workspace_a
|
|
mock_pg_db.workspace = "workspace_a"
|
|
|
|
storage_a = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="workspace_a",
|
|
)
|
|
|
|
# Mock table_exists for workspace_a
|
|
async def mock_check_table_exists_a(table_name):
|
|
if table_name == storage_a.legacy_table_name:
|
|
return True
|
|
if table_name == storage_a.table_name:
|
|
return migration_state["new_table_exists"]
|
|
return False
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists_a)
|
|
|
|
# Mock query for workspace_a (Case 3)
|
|
async def mock_query_a(sql, params=None, multirows=False, **kwargs):
|
|
sql_upper = sql.upper()
|
|
base_name = storage_a.legacy_table_name.upper()
|
|
|
|
if "COUNT(*)" in sql:
|
|
has_model_suffix = "TEST_MODEL_1536D" in sql_upper
|
|
is_legacy = base_name in sql_upper and not has_model_suffix
|
|
has_workspace_filter = "WHERE workspace" in sql
|
|
|
|
if is_legacy and has_workspace_filter:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_a":
|
|
return {"count": 3}
|
|
elif workspace == "workspace_b":
|
|
return {"count": 3}
|
|
elif is_legacy and not has_workspace_filter:
|
|
# Global count in legacy table
|
|
return {"count": 6}
|
|
elif has_model_suffix:
|
|
if has_workspace_filter:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_a":
|
|
return {"count": migration_state["workspace_a_migration_count"]}
|
|
if workspace == "workspace_b":
|
|
return {"count": migration_state["workspace_b_migration_count"]}
|
|
return {
|
|
"count": migration_state["workspace_a_migration_count"]
|
|
+ migration_state["workspace_b_migration_count"]
|
|
}
|
|
elif multirows and "SELECT *" in sql:
|
|
if "WHERE workspace" in sql:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_a":
|
|
# Handle keyset pagination
|
|
if "id >" in sql:
|
|
# params = [workspace, last_id, limit]
|
|
last_id = params[1] if len(params) > 1 else None
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows_a):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[2] if len(params) > 2 else 500
|
|
else:
|
|
# First batch: params = [workspace, limit]
|
|
start_idx = 0
|
|
limit = params[1] if len(params) > 1 else 500
|
|
end = min(start_idx + limit, len(mock_rows_a))
|
|
return mock_rows_a[start_idx:end]
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query_a)
|
|
|
|
# Track migration via _run_with_retry (batch migration uses this)
|
|
migration_a_executed = []
|
|
|
|
async def mock_run_with_retry_a(operation, **kwargs):
|
|
migration_a_executed.append(True)
|
|
migration_state["workspace_a_migration_count"] = len(mock_rows_a)
|
|
return None
|
|
|
|
mock_pg_db._run_with_retry = AsyncMock(side_effect=mock_run_with_retry_a)
|
|
|
|
# Initialize workspace_a (Case 3)
|
|
with patch("lightrag.kg.postgres_impl.logger"):
|
|
await storage_a.initialize()
|
|
migration_state["new_table_exists"] = True
|
|
migration_state["workspace_a_migrated"] = True
|
|
|
|
print("✅ Step 1: Workspace A initialized")
|
|
# Verify migration was executed via _run_with_retry (batch migration uses executemany)
|
|
assert (
|
|
len(migration_a_executed) > 0
|
|
), "Migration should have been executed for workspace_a"
|
|
print(f"✅ Step 1: Migration executed {len(migration_a_executed)} batch(es)")
|
|
|
|
# Step 2: Simulate workspace_b initialization (Case 3 - both exist, but legacy has B's data)
|
|
# CRITICAL: Set db.workspace to workspace_b
|
|
mock_pg_db.workspace = "workspace_b"
|
|
|
|
storage_b = PGVectorStorage(
|
|
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
|
global_config=config,
|
|
embedding_func=embedding_func,
|
|
workspace="workspace_b",
|
|
)
|
|
|
|
mock_pg_db.reset_mock()
|
|
|
|
# Mock table_exists for workspace_b (both exist)
|
|
async def mock_check_table_exists_b(table_name):
|
|
return True # Both tables exist
|
|
|
|
mock_pg_db.check_table_exists = AsyncMock(side_effect=mock_check_table_exists_b)
|
|
|
|
# Mock query for workspace_b (Case 3)
|
|
async def mock_query_b(sql, params=None, multirows=False, **kwargs):
|
|
sql_upper = sql.upper()
|
|
base_name = storage_b.legacy_table_name.upper()
|
|
|
|
if "COUNT(*)" in sql:
|
|
has_model_suffix = "TEST_MODEL_1536D" in sql_upper
|
|
is_legacy = base_name in sql_upper and not has_model_suffix
|
|
has_workspace_filter = "WHERE workspace" in sql
|
|
|
|
if is_legacy and has_workspace_filter:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_b":
|
|
return {"count": 3} # workspace_b still has data in legacy
|
|
elif workspace == "workspace_a":
|
|
return {"count": 0} # workspace_a already migrated
|
|
elif is_legacy and not has_workspace_filter:
|
|
# Global count: only workspace_b data remains
|
|
return {"count": 3}
|
|
elif has_model_suffix:
|
|
if has_workspace_filter:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_b":
|
|
return {"count": migration_state["workspace_b_migration_count"]}
|
|
elif workspace == "workspace_a":
|
|
return {"count": 3}
|
|
else:
|
|
return {"count": 3 + migration_state["workspace_b_migration_count"]}
|
|
elif multirows and "SELECT *" in sql:
|
|
if "WHERE workspace" in sql:
|
|
workspace = params[0] if params and len(params) > 0 else None
|
|
if workspace == "workspace_b":
|
|
# Handle keyset pagination
|
|
if "id >" in sql:
|
|
# params = [workspace, last_id, limit]
|
|
last_id = params[1] if len(params) > 1 else None
|
|
start_idx = 0
|
|
for i, row in enumerate(mock_rows_b):
|
|
if row["id"] == last_id:
|
|
start_idx = i + 1
|
|
break
|
|
limit = params[2] if len(params) > 2 else 500
|
|
else:
|
|
# First batch: params = [workspace, limit]
|
|
start_idx = 0
|
|
limit = params[1] if len(params) > 1 else 500
|
|
end = min(start_idx + limit, len(mock_rows_b))
|
|
return mock_rows_b[start_idx:end]
|
|
return {}
|
|
|
|
mock_pg_db.query = AsyncMock(side_effect=mock_query_b)
|
|
|
|
# Track migration via _run_with_retry for workspace_b
|
|
migration_b_executed = []
|
|
|
|
async def mock_run_with_retry_b(operation, **kwargs):
|
|
migration_b_executed.append(True)
|
|
migration_state["workspace_b_migration_count"] = len(mock_rows_b)
|
|
return None
|
|
|
|
mock_pg_db._run_with_retry = AsyncMock(side_effect=mock_run_with_retry_b)
|
|
|
|
# Initialize workspace_b (Case 3 - both tables exist)
|
|
with patch("lightrag.kg.postgres_impl.logger"):
|
|
await storage_b.initialize()
|
|
|
|
print("✅ Step 2: Workspace B initialized")
|
|
|
|
# Verify workspace_b migration happens when new table has no workspace_b data
|
|
# but legacy table still has workspace_b data.
|
|
assert (
|
|
len(migration_b_executed) > 0
|
|
), "Migration should have been executed for workspace_b"
|
|
print("✅ Step 2: Migration executed for workspace_b")
|
|
|
|
print("\n🎉 Case 1c: Sequential workspace migration verification complete!")
|
|
print(" - Workspace A: Migrated successfully (only legacy existed)")
|
|
print(" - Workspace B: Migrated successfully (new table empty for workspace_b)")
|