from pathlib import Path from typing import Self class GLiNER: @classmethod def from_pretrained( cls, model_id: str, revision: str | None = None, cache_dir: str | Path | None = None, force_download: bool = False, proxies: dict[str, str] | None = None, resume_download: bool = False, local_files_only: bool = False, token: str | bool | None = None, map_location: str = "cpu", strict: bool = False, load_tokenizer: bool | None = None, resize_token_embeddings: bool | None = True, compile_torch_model: bool | None = False, load_onnx_model: bool | None = False, onnx_model_file: str | None = "model.onnx", max_length: int | None = None, max_width: int | None = None, post_fusion_schema: str | None = None, _attn_implementation: str | None = None, ) -> Self: ... def predict_entities( self, text: str, labels: list[str], flat_ner: bool = True, threshold: float = 0.5, multi_label: bool = False, ) -> list[dict[str, object]]: ...