add rerank model
This commit is contained in:
271
docs/rerank_integration.md
Normal file
271
docs/rerank_integration.md
Normal file
@@ -0,0 +1,271 @@
|
||||
# Rerank Integration in LightRAG
|
||||
|
||||
This document explains how to configure and use the rerank functionality in LightRAG to improve retrieval quality.
|
||||
|
||||
## ⚠️ Important: Parameter Priority
|
||||
|
||||
**QueryParam.top_k has higher priority than rerank_top_k configuration:**
|
||||
|
||||
- When you set `QueryParam(top_k=5)`, it will override the `rerank_top_k=10` setting in LightRAG configuration
|
||||
- This means the actual number of documents sent to rerank will be determined by QueryParam.top_k
|
||||
- For optimal rerank performance, always consider the top_k value in your QueryParam calls
|
||||
- Example: `rag.aquery(query, param=QueryParam(mode="naive", top_k=20))` will use 20, not rerank_top_k
|
||||
|
||||
## Overview
|
||||
|
||||
Reranking is an optional feature that improves the quality of retrieved documents by re-ordering them based on their relevance to the query. This is particularly useful when you want higher precision in document retrieval across all query modes (naive, local, global, hybrid, mix).
|
||||
|
||||
## Architecture
|
||||
|
||||
The rerank integration follows the same design pattern as the LLM integration:
|
||||
|
||||
- **Configurable Models**: Support for multiple rerank providers through a generic API
|
||||
- **Async Processing**: Non-blocking rerank operations
|
||||
- **Error Handling**: Graceful fallback to original results
|
||||
- **Optional Feature**: Can be enabled/disabled via configuration
|
||||
- **Code Reuse**: Single generic implementation for Jina/Cohere compatible APIs
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
Set these variables in your `.env` file or environment:
|
||||
|
||||
```bash
|
||||
# Enable/disable reranking
|
||||
ENABLE_RERANK=True
|
||||
|
||||
# Rerank model configuration
|
||||
RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
||||
RERANK_MAX_ASYNC=4
|
||||
RERANK_TOP_K=10
|
||||
|
||||
# API configuration
|
||||
RERANK_API_KEY=your_rerank_api_key_here
|
||||
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
|
||||
|
||||
# Provider-specific keys (optional alternatives)
|
||||
JINA_API_KEY=your_jina_api_key_here
|
||||
COHERE_API_KEY=your_cohere_api_key_here
|
||||
```
|
||||
|
||||
### Programmatic Configuration
|
||||
|
||||
```python
|
||||
from lightrag import LightRAG
|
||||
from lightrag.rerank import custom_rerank, RerankModel
|
||||
|
||||
# Method 1: Using environment variables (recommended)
|
||||
rag = LightRAG(
|
||||
working_dir="./rag_storage",
|
||||
llm_model_func=your_llm_func,
|
||||
embedding_func=your_embedding_func,
|
||||
# Rerank automatically configured from environment variables
|
||||
)
|
||||
|
||||
# Method 2: Explicit configuration
|
||||
rerank_model = RerankModel(
|
||||
rerank_func=custom_rerank,
|
||||
kwargs={
|
||||
"model": "BAAI/bge-reranker-v2-m3",
|
||||
"base_url": "https://api.your-provider.com/v1/rerank",
|
||||
"api_key": "your_api_key_here",
|
||||
}
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir="./rag_storage",
|
||||
llm_model_func=your_llm_func,
|
||||
embedding_func=your_embedding_func,
|
||||
enable_rerank=True,
|
||||
rerank_model_func=rerank_model.rerank,
|
||||
rerank_top_k=10,
|
||||
)
|
||||
```
|
||||
|
||||
## Supported Providers
|
||||
|
||||
### 1. Custom/Generic API (Recommended)
|
||||
|
||||
For Jina/Cohere compatible APIs:
|
||||
|
||||
```python
|
||||
from lightrag.rerank import custom_rerank
|
||||
|
||||
# Your custom API endpoint
|
||||
result = await custom_rerank(
|
||||
query="your query",
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
base_url="https://api.your-provider.com/v1/rerank",
|
||||
api_key="your_api_key_here",
|
||||
top_k=10
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Jina AI
|
||||
|
||||
```python
|
||||
from lightrag.rerank import jina_rerank
|
||||
|
||||
result = await jina_rerank(
|
||||
query="your query",
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
api_key="your_jina_api_key"
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Cohere
|
||||
|
||||
```python
|
||||
from lightrag.rerank import cohere_rerank
|
||||
|
||||
result = await cohere_rerank(
|
||||
query="your query",
|
||||
documents=documents,
|
||||
model="rerank-english-v2.0",
|
||||
api_key="your_cohere_api_key"
|
||||
)
|
||||
```
|
||||
|
||||
## Integration Points
|
||||
|
||||
Reranking is automatically applied at these key retrieval stages:
|
||||
|
||||
1. **Naive Mode**: After vector similarity search in `_get_vector_context`
|
||||
2. **Local Mode**: After entity retrieval in `_get_node_data`
|
||||
3. **Global Mode**: After relationship retrieval in `_get_edge_data`
|
||||
4. **Hybrid/Mix Modes**: Applied to all relevant components
|
||||
|
||||
## Configuration Parameters
|
||||
|
||||
| Parameter | Type | Default | Description |
|
||||
|-----------|------|---------|-------------|
|
||||
| `enable_rerank` | bool | False | Enable/disable reranking |
|
||||
| `rerank_model_name` | str | "BAAI/bge-reranker-v2-m3" | Model identifier |
|
||||
| `rerank_model_max_async` | int | 4 | Max concurrent rerank calls |
|
||||
| `rerank_top_k` | int | 10 | Number of top results to return ⚠️ **Overridden by QueryParam.top_k** |
|
||||
| `rerank_model_func` | callable | None | Custom rerank function |
|
||||
| `rerank_model_kwargs` | dict | {} | Additional rerank parameters |
|
||||
|
||||
## Example Usage
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
|
||||
|
||||
async def main():
|
||||
# Initialize with rerank enabled
|
||||
rag = LightRAG(
|
||||
working_dir="./rag_storage",
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=openai_embedding,
|
||||
enable_rerank=True,
|
||||
)
|
||||
|
||||
# Insert documents
|
||||
await rag.ainsert([
|
||||
"Document 1 content...",
|
||||
"Document 2 content...",
|
||||
])
|
||||
|
||||
# Query with rerank (automatically applied)
|
||||
result = await rag.aquery(
|
||||
"Your question here",
|
||||
param=QueryParam(mode="hybrid", top_k=5) # ⚠️ This top_k=5 overrides rerank_top_k
|
||||
)
|
||||
|
||||
print(result)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
### Direct Rerank Usage
|
||||
|
||||
```python
|
||||
from lightrag.rerank import custom_rerank
|
||||
|
||||
async def test_rerank():
|
||||
documents = [
|
||||
{"content": "Text about topic A"},
|
||||
{"content": "Text about topic B"},
|
||||
{"content": "Text about topic C"},
|
||||
]
|
||||
|
||||
reranked = await custom_rerank(
|
||||
query="Tell me about topic A",
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
base_url="https://api.your-provider.com/v1/rerank",
|
||||
api_key="your_api_key_here",
|
||||
top_k=2
|
||||
)
|
||||
|
||||
for doc in reranked:
|
||||
print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Parameter Priority Awareness**: Remember that QueryParam.top_k always overrides rerank_top_k configuration
|
||||
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
|
||||
3. **API Limits**: Monitor API usage and implement rate limiting if needed
|
||||
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
|
||||
5. **Top-k Selection**: Choose appropriate `top_k` values in QueryParam based on your use case
|
||||
6. **Cost Management**: Consider rerank API costs in your budget planning
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **API Key Missing**: Ensure `RERANK_API_KEY` or provider-specific keys are set
|
||||
2. **Network Issues**: Check `RERANK_BASE_URL` and network connectivity
|
||||
3. **Model Errors**: Verify the rerank model name is supported by your API
|
||||
4. **Document Format**: Ensure documents have `content` or `text` fields
|
||||
|
||||
### Debug Mode
|
||||
|
||||
Enable debug logging to see rerank operations:
|
||||
|
||||
```python
|
||||
import logging
|
||||
logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
The rerank integration includes automatic fallback:
|
||||
|
||||
```python
|
||||
# If rerank fails, original documents are returned
|
||||
# No exceptions are raised to the user
|
||||
# Errors are logged for debugging
|
||||
```
|
||||
|
||||
## API Compatibility
|
||||
|
||||
The generic rerank API expects this response format:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"index": 0,
|
||||
"relevance_score": 0.95
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"relevance_score": 0.87
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
This is compatible with:
|
||||
- Jina AI Rerank API
|
||||
- Cohere Rerank API
|
||||
- Custom APIs following the same format
|
||||
11
env.example
11
env.example
@@ -179,3 +179,14 @@ QDRANT_URL=http://localhost:6333
|
||||
### Redis
|
||||
REDIS_URI=redis://localhost:6379
|
||||
# REDIS_WORKSPACE=forced_workspace_name
|
||||
|
||||
# Rerank Configuration
|
||||
ENABLE_RERANK=False
|
||||
RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
||||
RERANK_MAX_ASYNC=4
|
||||
RERANK_TOP_K=10
|
||||
# Note: QueryParam.top_k in your code will override RERANK_TOP_K setting
|
||||
|
||||
# Rerank API Configuration
|
||||
RERANK_API_KEY=your_rerank_api_key_here
|
||||
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
|
||||
|
||||
193
examples/rerank_example.py
Normal file
193
examples/rerank_example.py
Normal file
@@ -0,0 +1,193 @@
|
||||
"""
|
||||
LightRAG Rerank Integration Example
|
||||
|
||||
This example demonstrates how to use rerank functionality with LightRAG
|
||||
to improve retrieval quality across different query modes.
|
||||
|
||||
IMPORTANT: Parameter Priority
|
||||
- QueryParam(top_k=N) has higher priority than rerank_top_k in LightRAG configuration
|
||||
- If you set QueryParam(top_k=5), it will override rerank_top_k setting
|
||||
- For optimal rerank performance, use appropriate top_k values in QueryParam
|
||||
|
||||
Configuration Required:
|
||||
1. Set your LLM API key and base URL in llm_model_func()
|
||||
2. Set your embedding API key and base URL in embedding_func()
|
||||
3. Set your rerank API key and base URL in the rerank configuration
|
||||
4. Or use environment variables (.env file):
|
||||
- RERANK_API_KEY=your_actual_rerank_api_key
|
||||
- RERANK_BASE_URL=https://your-actual-rerank-endpoint/v1/rerank
|
||||
- RERANK_MODEL=your_rerank_model_name
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.rerank import custom_rerank, RerankModel
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc, setup_logger
|
||||
|
||||
# Set up your working directory
|
||||
WORKING_DIR = "./test_rerank"
|
||||
setup_logger("test_rerank")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="your_llm_api_key_here",
|
||||
base_url="https://api.your-llm-provider.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="your_embedding_api_key_here",
|
||||
base_url="https://api.your-embedding-provider.com/v1",
|
||||
)
|
||||
|
||||
async def create_rag_with_rerank():
|
||||
"""Create LightRAG instance with rerank configuration"""
|
||||
|
||||
# Get embedding dimension
|
||||
test_embedding = await embedding_func(["test"])
|
||||
embedding_dim = test_embedding.shape[1]
|
||||
print(f"Detected embedding dimension: {embedding_dim}")
|
||||
|
||||
# Create rerank model
|
||||
rerank_model = RerankModel(
|
||||
rerank_func=custom_rerank,
|
||||
kwargs={
|
||||
"model": "BAAI/bge-reranker-v2-m3",
|
||||
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
|
||||
"api_key": "your_rerank_api_key_here",
|
||||
}
|
||||
)
|
||||
|
||||
# Initialize LightRAG with rerank
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
# Rerank Configuration
|
||||
enable_rerank=True,
|
||||
rerank_model_func=rerank_model.rerank,
|
||||
rerank_top_k=10, # Note: QueryParam.top_k will override this
|
||||
)
|
||||
|
||||
return rag
|
||||
|
||||
async def test_rerank_with_different_topk():
|
||||
"""
|
||||
Test rerank functionality with different top_k settings to demonstrate parameter priority
|
||||
"""
|
||||
print("🚀 Setting up LightRAG with Rerank functionality...")
|
||||
|
||||
rag = await create_rag_with_rerank()
|
||||
|
||||
# Insert sample documents
|
||||
sample_docs = [
|
||||
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
|
||||
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
|
||||
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
|
||||
"Natural language processing has evolved with large language models and transformers.",
|
||||
"Machine learning algorithms can learn patterns from data without explicit programming."
|
||||
]
|
||||
|
||||
print("📄 Inserting sample documents...")
|
||||
await rag.ainsert(sample_docs)
|
||||
|
||||
query = "How does reranking improve retrieval quality?"
|
||||
print(f"\n🔍 Testing query: '{query}'")
|
||||
print("=" * 80)
|
||||
|
||||
# Test different top_k values to show parameter priority
|
||||
top_k_values = [2, 5, 10]
|
||||
|
||||
for top_k in top_k_values:
|
||||
print(f"\n📊 Testing with QueryParam(top_k={top_k}) - overrides rerank_top_k=10:")
|
||||
|
||||
# Test naive mode with specific top_k
|
||||
result = await rag.aquery(
|
||||
query,
|
||||
param=QueryParam(mode="naive", top_k=top_k)
|
||||
)
|
||||
print(f" Result length: {len(result)} characters")
|
||||
print(f" Preview: {result[:100]}...")
|
||||
|
||||
async def test_direct_rerank():
|
||||
"""Test rerank function directly"""
|
||||
print("\n🔧 Direct Rerank API Test")
|
||||
print("=" * 40)
|
||||
|
||||
documents = [
|
||||
{"content": "Reranking significantly improves retrieval quality"},
|
||||
{"content": "LightRAG supports advanced reranking capabilities"},
|
||||
{"content": "Vector search finds semantically similar documents"},
|
||||
{"content": "Natural language processing with modern transformers"},
|
||||
{"content": "The quick brown fox jumps over the lazy dog"}
|
||||
]
|
||||
|
||||
query = "rerank improve quality"
|
||||
print(f"Query: '{query}'")
|
||||
print(f"Documents: {len(documents)}")
|
||||
|
||||
try:
|
||||
reranked_docs = await custom_rerank(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
base_url="https://api.your-rerank-provider.com/v1/rerank",
|
||||
api_key="your_rerank_api_key_here",
|
||||
top_k=3
|
||||
)
|
||||
|
||||
print("\n✅ Rerank Results:")
|
||||
for i, doc in enumerate(reranked_docs):
|
||||
score = doc.get("rerank_score", "N/A")
|
||||
content = doc.get("content", "")[:60]
|
||||
print(f" {i+1}. Score: {score:.4f} | {content}...")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Rerank failed: {e}")
|
||||
|
||||
async def main():
|
||||
"""Main example function"""
|
||||
print("🎯 LightRAG Rerank Integration Example")
|
||||
print("=" * 60)
|
||||
|
||||
try:
|
||||
# Test rerank with different top_k values
|
||||
await test_rerank_with_different_topk()
|
||||
|
||||
# Test direct rerank
|
||||
await test_direct_rerank()
|
||||
|
||||
print("\n✅ Example completed successfully!")
|
||||
print("\n💡 Key Points:")
|
||||
print(" ✓ QueryParam.top_k has higher priority than rerank_top_k")
|
||||
print(" ✓ Rerank improves document relevance ordering")
|
||||
print(" ✓ Configure API keys in your .env file for production")
|
||||
print(" ✓ Monitor API usage and costs when using rerank services")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n❌ Example failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@@ -240,6 +240,35 @@ class LightRAG:
|
||||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional keyword arguments passed to the LLM model function."""
|
||||
|
||||
# Rerank Configuration
|
||||
# ---
|
||||
|
||||
enable_rerank: bool = field(
|
||||
default=bool(os.getenv("ENABLE_RERANK", "False").lower() == "true")
|
||||
)
|
||||
"""Enable reranking for improved retrieval quality. Defaults to False."""
|
||||
|
||||
rerank_model_func: Callable[..., object] | None = field(default=None)
|
||||
"""Function for reranking retrieved documents. Optional."""
|
||||
|
||||
rerank_model_name: str = field(
|
||||
default=os.getenv("RERANK_MODEL", "BAAI/bge-reranker-v2-m3")
|
||||
)
|
||||
"""Name of the rerank model used for reranking documents."""
|
||||
|
||||
rerank_model_max_async: int = field(default=int(os.getenv("RERANK_MAX_ASYNC", 4)))
|
||||
"""Maximum number of concurrent rerank calls."""
|
||||
|
||||
rerank_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional keyword arguments passed to the rerank model function."""
|
||||
|
||||
rerank_top_k: int = field(default=int(os.getenv("RERANK_TOP_K", 10)))
|
||||
"""Number of top documents to return after reranking.
|
||||
|
||||
Note: This value will be overridden by QueryParam.top_k in query calls.
|
||||
Example: QueryParam(top_k=5) will override rerank_top_k=10 setting.
|
||||
"""
|
||||
|
||||
# Storage
|
||||
# ---
|
||||
|
||||
@@ -444,6 +473,22 @@ class LightRAG:
|
||||
)
|
||||
)
|
||||
|
||||
# Init Rerank
|
||||
if self.enable_rerank and self.rerank_model_func:
|
||||
self.rerank_model_func = priority_limit_async_func_call(
|
||||
self.rerank_model_max_async
|
||||
)(
|
||||
partial(
|
||||
self.rerank_model_func, # type: ignore
|
||||
**self.rerank_model_kwargs,
|
||||
)
|
||||
)
|
||||
logger.info("Rerank model initialized for improved retrieval quality")
|
||||
elif self.enable_rerank and not self.rerank_model_func:
|
||||
logger.warning(
|
||||
"Rerank is enabled but no rerank_model_func provided. Reranking will be skipped."
|
||||
)
|
||||
|
||||
self._storages_status = StoragesStatus.CREATED
|
||||
|
||||
if self.auto_manage_storages_states:
|
||||
|
||||
@@ -1783,6 +1783,15 @@ async def _get_vector_context(
|
||||
if not valid_chunks:
|
||||
return [], [], []
|
||||
|
||||
# Apply reranking if enabled
|
||||
global_config = chunks_vdb.global_config
|
||||
valid_chunks = await apply_rerank_if_enabled(
|
||||
query=query,
|
||||
retrieved_docs=valid_chunks,
|
||||
global_config=global_config,
|
||||
top_k=query_param.top_k,
|
||||
)
|
||||
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
@@ -1966,6 +1975,15 @@ async def _get_node_data(
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
|
||||
# Apply reranking if enabled for entity results
|
||||
global_config = entities_vdb.global_config
|
||||
results = await apply_rerank_if_enabled(
|
||||
query=query,
|
||||
retrieved_docs=results,
|
||||
global_config=global_config,
|
||||
top_k=query_param.top_k,
|
||||
)
|
||||
|
||||
# Extract all entity IDs from your results list
|
||||
node_ids = [r["entity_name"] for r in results]
|
||||
|
||||
@@ -2269,6 +2287,15 @@ async def _get_edge_data(
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
|
||||
# Apply reranking if enabled for relationship results
|
||||
global_config = relationships_vdb.global_config
|
||||
results = await apply_rerank_if_enabled(
|
||||
query=keywords,
|
||||
retrieved_docs=results,
|
||||
global_config=global_config,
|
||||
top_k=query_param.top_k,
|
||||
)
|
||||
|
||||
# Prepare edge pairs in two forms:
|
||||
# For the batch edge properties function, use dicts.
|
||||
edge_pairs_dicts = [{"src": r["src_id"], "tgt": r["tgt_id"]} for r in results]
|
||||
@@ -2806,3 +2833,61 @@ async def query_with_keywords(
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown mode {param.mode}")
|
||||
|
||||
|
||||
async def apply_rerank_if_enabled(
|
||||
query: str,
|
||||
retrieved_docs: list[dict],
|
||||
global_config: dict,
|
||||
top_k: int = None,
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Apply reranking to retrieved documents if rerank is enabled.
|
||||
|
||||
Args:
|
||||
query: The search query
|
||||
retrieved_docs: List of retrieved documents
|
||||
global_config: Global configuration containing rerank settings
|
||||
top_k: Number of top documents to return after reranking
|
||||
|
||||
Returns:
|
||||
Reranked documents if rerank is enabled, otherwise original documents
|
||||
"""
|
||||
if not global_config.get("enable_rerank", False) or not retrieved_docs:
|
||||
return retrieved_docs
|
||||
|
||||
rerank_func = global_config.get("rerank_model_func")
|
||||
if not rerank_func:
|
||||
logger.debug(
|
||||
"Rerank is enabled but no rerank function provided, skipping rerank"
|
||||
)
|
||||
return retrieved_docs
|
||||
|
||||
try:
|
||||
# Determine top_k for reranking
|
||||
rerank_top_k = top_k or global_config.get("rerank_top_k", 10)
|
||||
rerank_top_k = min(rerank_top_k, len(retrieved_docs))
|
||||
|
||||
logger.debug(
|
||||
f"Applying rerank to {len(retrieved_docs)} documents, returning top {rerank_top_k}"
|
||||
)
|
||||
|
||||
# Apply reranking
|
||||
reranked_docs = await rerank_func(
|
||||
query=query,
|
||||
documents=retrieved_docs,
|
||||
top_k=rerank_top_k,
|
||||
)
|
||||
|
||||
if reranked_docs and len(reranked_docs) > 0:
|
||||
logger.info(
|
||||
f"Successfully reranked {len(retrieved_docs)} documents to {len(reranked_docs)}"
|
||||
)
|
||||
return reranked_docs
|
||||
else:
|
||||
logger.warning("Rerank returned empty results, using original documents")
|
||||
return retrieved_docs[:rerank_top_k] if rerank_top_k else retrieved_docs
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during reranking: {e}, using original documents")
|
||||
return retrieved_docs
|
||||
|
||||
307
lightrag/rerank.py
Normal file
307
lightrag/rerank.py
Normal file
@@ -0,0 +1,307 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import json
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
from typing import Callable, Any, List, Dict, Optional
|
||||
from pydantic import BaseModel, Field
|
||||
from dataclasses import asdict
|
||||
|
||||
from .utils import logger
|
||||
|
||||
|
||||
class RerankModel(BaseModel):
|
||||
"""
|
||||
Pydantic model class for defining a custom rerank model.
|
||||
|
||||
Attributes:
|
||||
rerank_func (Callable[[Any], List[Dict]]): A callable function that reranks documents.
|
||||
The function should take query and documents as input and return reranked results.
|
||||
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
|
||||
This could include parameters such as the model name, API key, etc.
|
||||
|
||||
Example usage:
|
||||
Rerank model example from jina:
|
||||
```python
|
||||
rerank_model = RerankModel(
|
||||
rerank_func=jina_rerank,
|
||||
kwargs={
|
||||
"model": "BAAI/bge-reranker-v2-m3",
|
||||
"api_key": "your_api_key_here",
|
||||
"base_url": "https://api.jina.ai/v1/rerank"
|
||||
}
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
rerank_func: Callable[[Any], List[Dict]]
|
||||
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
async def rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
top_k: Optional[int] = None,
|
||||
**extra_kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Rerank documents using the configured model function."""
|
||||
# Merge extra kwargs with model kwargs
|
||||
kwargs = {**self.kwargs, **extra_kwargs}
|
||||
return await self.rerank_func(
|
||||
query=query,
|
||||
documents=documents,
|
||||
top_k=top_k,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class MultiRerankModel(BaseModel):
|
||||
"""Multiple rerank models for different modes/scenarios."""
|
||||
|
||||
# Primary rerank model (used if mode-specific models are not defined)
|
||||
rerank_model: Optional[RerankModel] = None
|
||||
|
||||
# Mode-specific rerank models
|
||||
entity_rerank_model: Optional[RerankModel] = None
|
||||
relation_rerank_model: Optional[RerankModel] = None
|
||||
chunk_rerank_model: Optional[RerankModel] = None
|
||||
|
||||
async def rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
mode: str = "default",
|
||||
top_k: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Rerank using the appropriate model based on mode."""
|
||||
|
||||
# Select model based on mode
|
||||
if mode == "entity" and self.entity_rerank_model:
|
||||
model = self.entity_rerank_model
|
||||
elif mode == "relation" and self.relation_rerank_model:
|
||||
model = self.relation_rerank_model
|
||||
elif mode == "chunk" and self.chunk_rerank_model:
|
||||
model = self.chunk_rerank_model
|
||||
elif self.rerank_model:
|
||||
model = self.rerank_model
|
||||
else:
|
||||
logger.warning(f"No rerank model available for mode: {mode}")
|
||||
return documents
|
||||
|
||||
return await model.rerank(query, documents, top_k, **kwargs)
|
||||
|
||||
|
||||
async def generic_rerank_api(
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
model: str,
|
||||
base_url: str,
|
||||
api_key: str,
|
||||
top_k: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Generic rerank function that works with Jina/Cohere compatible APIs.
|
||||
|
||||
Args:
|
||||
query: The search query
|
||||
documents: List of documents to rerank
|
||||
model: Model identifier
|
||||
base_url: API endpoint URL
|
||||
api_key: API authentication key
|
||||
top_k: Number of top results to return
|
||||
**kwargs: Additional API-specific parameters
|
||||
|
||||
Returns:
|
||||
List of reranked documents with relevance scores
|
||||
"""
|
||||
if not api_key:
|
||||
logger.warning("No API key provided for rerank service")
|
||||
return documents
|
||||
|
||||
if not documents:
|
||||
return documents
|
||||
|
||||
# Prepare documents for reranking - handle both text and dict formats
|
||||
prepared_docs = []
|
||||
for doc in documents:
|
||||
if isinstance(doc, dict):
|
||||
# Use 'content' field if available, otherwise use 'text' or convert to string
|
||||
text = doc.get('content') or doc.get('text') or str(doc)
|
||||
else:
|
||||
text = str(doc)
|
||||
prepared_docs.append(text)
|
||||
|
||||
# Prepare request
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"query": query,
|
||||
"documents": prepared_docs,
|
||||
**kwargs
|
||||
}
|
||||
|
||||
if top_k is not None:
|
||||
data["top_k"] = min(top_k, len(prepared_docs))
|
||||
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(base_url, headers=headers, json=data) as response:
|
||||
if response.status != 200:
|
||||
error_text = await response.text()
|
||||
logger.error(f"Rerank API error {response.status}: {error_text}")
|
||||
return documents
|
||||
|
||||
result = await response.json()
|
||||
|
||||
# Extract reranked results
|
||||
if "results" in result:
|
||||
# Standard format: results contain index and relevance_score
|
||||
reranked_docs = []
|
||||
for item in result["results"]:
|
||||
if "index" in item:
|
||||
doc_idx = item["index"]
|
||||
if 0 <= doc_idx < len(documents):
|
||||
reranked_doc = documents[doc_idx].copy()
|
||||
if "relevance_score" in item:
|
||||
reranked_doc["rerank_score"] = item["relevance_score"]
|
||||
reranked_docs.append(reranked_doc)
|
||||
return reranked_docs
|
||||
else:
|
||||
logger.warning("Unexpected rerank API response format")
|
||||
return documents
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during reranking: {e}")
|
||||
return documents
|
||||
|
||||
|
||||
async def jina_rerank(
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
model: str = "BAAI/bge-reranker-v2-m3",
|
||||
top_k: Optional[int] = None,
|
||||
base_url: str = "https://api.jina.ai/v1/rerank",
|
||||
api_key: Optional[str] = None,
|
||||
**kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Rerank documents using Jina AI API.
|
||||
|
||||
Args:
|
||||
query: The search query
|
||||
documents: List of documents to rerank
|
||||
model: Jina rerank model name
|
||||
top_k: Number of top results to return
|
||||
base_url: Jina API endpoint
|
||||
api_key: Jina API key
|
||||
**kwargs: Additional parameters
|
||||
|
||||
Returns:
|
||||
List of reranked documents with relevance scores
|
||||
"""
|
||||
if api_key is None:
|
||||
api_key = os.getenv("JINA_API_KEY") or os.getenv("RERANK_API_KEY")
|
||||
|
||||
return await generic_rerank_api(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model=model,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
top_k=top_k,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
async def cohere_rerank(
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
model: str = "rerank-english-v2.0",
|
||||
top_k: Optional[int] = None,
|
||||
base_url: str = "https://api.cohere.ai/v1/rerank",
|
||||
api_key: Optional[str] = None,
|
||||
**kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Rerank documents using Cohere API.
|
||||
|
||||
Args:
|
||||
query: The search query
|
||||
documents: List of documents to rerank
|
||||
model: Cohere rerank model name
|
||||
top_k: Number of top results to return
|
||||
base_url: Cohere API endpoint
|
||||
api_key: Cohere API key
|
||||
**kwargs: Additional parameters
|
||||
|
||||
Returns:
|
||||
List of reranked documents with relevance scores
|
||||
"""
|
||||
if api_key is None:
|
||||
api_key = os.getenv("COHERE_API_KEY") or os.getenv("RERANK_API_KEY")
|
||||
|
||||
return await generic_rerank_api(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model=model,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
top_k=top_k,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
# Convenience function for custom API endpoints
|
||||
async def custom_rerank(
|
||||
query: str,
|
||||
documents: List[Dict[str, Any]],
|
||||
model: str,
|
||||
base_url: str,
|
||||
api_key: str,
|
||||
top_k: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Rerank documents using a custom API endpoint.
|
||||
This is useful for self-hosted or custom rerank services.
|
||||
"""
|
||||
return await generic_rerank_api(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model=model,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
top_k=top_k,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
async def main():
|
||||
# Example usage
|
||||
docs = [
|
||||
{"content": "The capital of France is Paris."},
|
||||
{"content": "Tokyo is the capital of Japan."},
|
||||
{"content": "London is the capital of England."},
|
||||
]
|
||||
|
||||
query = "What is the capital of France?"
|
||||
|
||||
result = await jina_rerank(
|
||||
query=query,
|
||||
documents=docs,
|
||||
top_k=2,
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
print(result)
|
||||
|
||||
asyncio.run(main())
|
||||
Reference in New Issue
Block a user