refactor: Qdrant Multi-tenancy (Include staged)

Signed-off-by: Anush008 <anushshetty90@gmail.com>
This commit is contained in:
Anush008
2025-10-26 09:58:24 +05:30
parent 00aa5e53a7
commit 8584980e3a
4 changed files with 118 additions and 110 deletions

View File

@@ -933,7 +933,8 @@ maxclients 500
The `workspace` parameter ensures data isolation between different LightRAG instances. Once initialized, the `workspace` is immutable and cannot be changed.Here is how workspaces are implemented for different types of storage:
- **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
- **For Qdrant vector database, data isolation is achieved through payload-based partitioning (Qdrant's recommended multitenancy approach):** `QdrantVectorDBStorage` uses shared collections with payload filtering for unlimited workspace scalability.
- **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
- **For the Neo4j graph database, logical data isolation is achieved through labels:** `Neo4JStorage`

View File

@@ -165,7 +165,8 @@ Configuring an independent working directory and a dedicated `.env` configuratio
The command-line `workspace` argument and the `WORKSPACE` environment variable in the `.env` file can both be used to specify the workspace name for the current instance, with the command-line argument having higher priority. Here is how workspaces are implemented for different types of storage:
- **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
- **For Qdrant vector database, data isolation is achieved through payload-based partitioning (Qdrant's recommended multitenancy approach):** `QdrantVectorDBStorage` uses shared collections with payload filtering for unlimited workspace scalability.
- **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
- **For graph databases, logical data isolation is achieved through labels:** `Neo4JStorage`, `MemgraphStorage`

View File

@@ -1,21 +1,29 @@
import asyncio
import os
from typing import Any, final, List
from dataclasses import dataclass
import numpy as np
import configparser
import hashlib
import os
import uuid
from ..utils import logger
from dataclasses import dataclass
from typing import Any, List, final
import numpy as np
import pipmaster as pm
from ..base import BaseVectorStorage
from ..kg.shared_storage import get_data_init_lock, get_storage_lock
import configparser
import pipmaster as pm
from ..utils import compute_mdhash_id, logger
if not pm.is_installed("qdrant-client"):
pm.install("qdrant-client")
from qdrant_client import QdrantClient, models # type: ignore
DEFAULT_WORKSPACE = "_"
WORKSPACE_ID_FIELD = "workspace_id"
ENTITY_PREFIX = "ent-"
CREATED_AT_FIELD = "created_at"
ID_FIELD = "id"
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@@ -48,6 +56,15 @@ def compute_mdhash_id_for_qdrant(
raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.")
def workspace_filter_condition(workspace: str) -> models.FieldCondition:
"""
Create a workspace filter condition for Qdrant queries.
"""
return models.FieldCondition(
key=WORKSPACE_ID_FIELD, match=models.MatchValue(value=workspace)
)
@final
@dataclass
class QdrantVectorDBStorage(BaseVectorStorage):
@@ -64,24 +81,19 @@ class QdrantVectorDBStorage(BaseVectorStorage):
self.__post_init__()
@staticmethod
def create_collection_if_not_exist(
client: QdrantClient, collection_name: str, **kwargs
):
exists = False
if hasattr(client, "collection_exists"):
try:
exists = client.collection_exists(collection_name)
except Exception:
exists = False
else:
try:
client.get_collection(collection_name)
exists = True
except Exception:
exists = False
def setup_collection(client: QdrantClient, collection_name: str, **kwargs):
exists = client.collection_exists(collection_name)
if not exists:
client.create_collection(collection_name, **kwargs)
client.create_payload_index(
collection_name=collection_name,
field_name=WORKSPACE_ID_FIELD,
field_schema=models.KeywordIndexParams(
type=models.KeywordIndexType.KEYWORD,
is_tenant=True, # Optimize storage structure for tenant co-location
),
)
def __post_init__(self):
# Check for QDRANT_WORKSPACE environment variable first (higher priority)
@@ -101,18 +113,14 @@ class QdrantVectorDBStorage(BaseVectorStorage):
f"Using passed workspace parameter: '{effective_workspace}'"
)
# Build final_namespace with workspace prefix for data isolation
# Keep original namespace unchanged for type detection logic
if effective_workspace:
self.final_namespace = f"{effective_workspace}_{self.namespace}"
logger.debug(
f"Final namespace with workspace prefix: '{self.final_namespace}'"
)
else:
# When workspace is empty, final_namespace equals original namespace
self.final_namespace = self.namespace
self.workspace = "_"
logger.debug(f"Final namespace (no workspace): '{self.final_namespace}'")
self.effective_workspace = effective_workspace or DEFAULT_WORKSPACE
# Use a shared collection with payload-based partitioning (Qdrant's recommended approach)
# Ref: https://qdrant.tech/documentation/guides/multiple-partitions/
self.final_namespace = self.namespace
logger.debug(
f"Using shared collection '{self.final_namespace}' with workspace '{self.effective_workspace}' for payload-based partitioning"
)
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
@@ -149,8 +157,8 @@ class QdrantVectorDBStorage(BaseVectorStorage):
f"[{self.workspace}] QdrantClient created successfully"
)
# Create collection if not exists
QdrantVectorDBStorage.create_collection_if_not_exist(
# Setup collection (create if not exists and configure indexes)
QdrantVectorDBStorage.setup_collection(
self._client,
self.final_namespace,
vectors_config=models.VectorParams(
@@ -158,6 +166,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
distance=models.Distance.COSINE,
),
)
self._initialized = True
logger.info(
f"[{self.workspace}] Qdrant collection '{self.namespace}' initialized successfully"
@@ -179,8 +188,9 @@ class QdrantVectorDBStorage(BaseVectorStorage):
list_data = [
{
"id": k,
"created_at": current_time,
ID_FIELD: k,
WORKSPACE_ID_FIELD: self.effective_workspace,
CREATED_AT_FIELD: current_time,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
@@ -200,7 +210,9 @@ class QdrantVectorDBStorage(BaseVectorStorage):
for i, d in enumerate(list_data):
list_points.append(
models.PointStruct(
id=compute_mdhash_id_for_qdrant(d["id"]),
id=compute_mdhash_id_for_qdrant(
d[ID_FIELD], prefix=self.effective_workspace
),
vector=embeddings[i],
payload=d,
)
@@ -222,21 +234,22 @@ class QdrantVectorDBStorage(BaseVectorStorage):
) # higher priority for query
embedding = embedding_result[0]
results = self._client.search(
results = self._client.query_points(
collection_name=self.final_namespace,
query_vector=embedding,
query=embedding,
limit=top_k,
with_payload=True,
score_threshold=self.cosine_better_than_threshold,
)
# logger.debug(f"[{self.workspace}] query result: {results}")
query_filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)]
),
).points
return [
{
**dp.payload,
"distance": dp.score,
"created_at": dp.payload.get("created_at"),
CREATED_AT_FIELD: dp.payload.get(CREATED_AT_FIELD),
}
for dp in results
]
@@ -252,14 +265,18 @@ class QdrantVectorDBStorage(BaseVectorStorage):
ids: List of vector IDs to be deleted
"""
try:
if not ids:
return
# Convert regular ids to Qdrant compatible ids
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
# Delete points from the collection
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Delete points from the collection with workspace filtering
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(
points=qdrant_ids,
),
points_selector=models.PointIdsList(points=qdrant_ids),
wait=True,
)
logger.debug(
@@ -277,18 +294,16 @@ class QdrantVectorDBStorage(BaseVectorStorage):
entity_name: Name of the entity to delete
"""
try:
# Generate the entity ID
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
# logger.debug(
# f"[{self.workspace}] Attempting to delete entity {entity_name} with ID {entity_id}"
# )
# Generate the entity ID using the same function as used for storage
entity_id = compute_mdhash_id(entity_name, prefix=ENTITY_PREFIX)
qdrant_entity_id = compute_mdhash_id_for_qdrant(
entity_id, prefix=self.effective_workspace
)
# Delete the entity point from the collection
# Delete the entity point by its Qdrant ID directly
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(
points=[entity_id],
),
points_selector=models.PointIdsList(points=[qdrant_entity_id]),
wait=True,
)
logger.debug(
@@ -304,10 +319,11 @@ class QdrantVectorDBStorage(BaseVectorStorage):
entity_name: Name of the entity whose relations should be deleted
"""
try:
# Find relations where the entity is either source or target
# Find relations where the entity is either source or target, with workspace filtering
results = self._client.scroll(
collection_name=self.final_namespace,
scroll_filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)],
should=[
models.FieldCondition(
key="src_id", match=models.MatchValue(value=entity_name)
@@ -315,7 +331,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
models.FieldCondition(
key="tgt_id", match=models.MatchValue(value=entity_name)
),
]
],
),
with_payload=True,
limit=1000, # Adjust as needed for your use case
@@ -326,12 +342,11 @@ class QdrantVectorDBStorage(BaseVectorStorage):
ids_to_delete = [point.id for point in relation_points]
if ids_to_delete:
# Delete the relations
# Delete the relations with workspace filtering
assert isinstance(self._client, QdrantClient)
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(
points=ids_to_delete,
),
points_selector=models.PointIdsList(points=ids_to_delete),
wait=True,
)
logger.debug(
@@ -357,9 +372,11 @@ class QdrantVectorDBStorage(BaseVectorStorage):
"""
try:
# Convert to Qdrant compatible ID
qdrant_id = compute_mdhash_id_for_qdrant(id)
qdrant_id = compute_mdhash_id_for_qdrant(
id, prefix=self.effective_workspace
)
# Retrieve the point by ID
# Retrieve the point by ID with workspace filtering
result = self._client.retrieve(
collection_name=self.final_namespace,
ids=[qdrant_id],
@@ -369,10 +386,9 @@ class QdrantVectorDBStorage(BaseVectorStorage):
if not result:
return None
# Ensure the result contains created_at field
payload = result[0].payload
if "created_at" not in payload:
payload["created_at"] = None
if CREATED_AT_FIELD not in payload:
payload[CREATED_AT_FIELD] = None
return payload
except Exception as e:
@@ -395,7 +411,10 @@ class QdrantVectorDBStorage(BaseVectorStorage):
try:
# Convert to Qdrant compatible IDs
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Retrieve the points by IDs
results = self._client.retrieve(
@@ -410,14 +429,14 @@ class QdrantVectorDBStorage(BaseVectorStorage):
for point in results:
payload = dict(point.payload or {})
if "created_at" not in payload:
payload["created_at"] = None
if CREATED_AT_FIELD not in payload:
payload[CREATED_AT_FIELD] = None
qdrant_point_id = str(point.id) if point.id is not None else ""
if qdrant_point_id:
payload_by_qdrant_id[qdrant_point_id] = payload
original_id = payload.get("id")
original_id = payload.get(ID_FIELD)
if original_id is not None:
payload_by_original_id[str(original_id)] = payload
@@ -450,7 +469,10 @@ class QdrantVectorDBStorage(BaseVectorStorage):
try:
# Convert to Qdrant compatible IDs
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Retrieve the points by IDs with vectors
results = self._client.retrieve(
@@ -464,7 +486,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
for point in results:
if point and point.vector is not None and point.payload:
# Get original ID from payload
original_id = point.payload.get("id")
original_id = point.payload.get(ID_FIELD)
if original_id:
# Convert numpy array to list if needed
vector_data = point.vector
@@ -482,7 +504,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all data from the Qdrant collection.
This method will delete all data for the current workspace from the Qdrant collection.
Returns:
dict[str, str]: Operation status and message
@@ -491,39 +513,23 @@ class QdrantVectorDBStorage(BaseVectorStorage):
"""
async with get_storage_lock():
try:
# Delete the collection and recreate it
exists = False
if hasattr(self._client, "collection_exists"):
try:
exists = self._client.collection_exists(self.final_namespace)
except Exception:
exists = False
else:
try:
self._client.get_collection(self.final_namespace)
exists = True
except Exception:
exists = False
if exists:
self._client.delete_collection(self.final_namespace)
# Recreate the collection
QdrantVectorDBStorage.create_collection_if_not_exist(
self._client,
self.final_namespace,
vectors_config=models.VectorParams(
size=self.embedding_func.embedding_dim,
distance=models.Distance.COSINE,
# Delete all points for the current workspace
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.FilterSelector(
filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)]
)
),
wait=True,
)
logger.info(
f"[{self.workspace}] Process {os.getpid()} drop Qdrant collection {self.namespace}"
f"[{self.workspace}] Process {os.getpid()} dropped workspace data from Qdrant collection {self.namespace}"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(
f"[{self.workspace}] Error dropping Qdrant collection {self.namespace}: {e}"
f"[{self.workspace}] Error dropping workspace data from Qdrant collection {self.namespace}: {e}"
)
return {"status": "error", "message": str(e)}

10
uv.lock generated
View File

@@ -1,5 +1,5 @@
version = 1
revision = 2
revision = 3
requires-python = ">=3.10"
resolution-markers = [
"python_full_version >= '3.13' and sys_platform == 'darwin'",
@@ -1590,11 +1590,11 @@ requires-dist = [
{ name = "numpy" },
{ name = "numpy", marker = "extra == 'api'" },
{ name = "ollama", marker = "extra == 'offline-llm'", specifier = ">=0.1.0,<1.0.0" },
{ name = "openai", marker = "extra == 'api'", specifier = ">=1.0.0,<2.0.0" },
{ name = "openai", marker = "extra == 'offline-llm'", specifier = ">=1.0.0,<2.0.0" },
{ name = "openai", marker = "extra == 'api'", specifier = ">=1.0.0,<3.0.0" },
{ name = "openai", marker = "extra == 'offline-llm'", specifier = ">=1.0.0,<3.0.0" },
{ name = "openpyxl", marker = "extra == 'offline-docs'", specifier = ">=3.0.0,<4.0.0" },
{ name = "pandas", specifier = ">=2.0.0,<2.3.0" },
{ name = "pandas", marker = "extra == 'api'", specifier = ">=2.0.0,<2.3.0" },
{ name = "pandas", specifier = ">=2.0.0,<2.4.0" },
{ name = "pandas", marker = "extra == 'api'", specifier = ">=2.0.0,<2.4.0" },
{ name = "passlib", extras = ["bcrypt"], marker = "extra == 'api'" },
{ name = "pipmaster" },
{ name = "pipmaster", marker = "extra == 'api'" },