Merge pull request #2434 from cclauss/patch-1
Fix typos discovered by codespell
This commit is contained in:
@@ -214,7 +214,7 @@ For a streaming response implementation example, please see `examples/lightrag_o
|
||||
|
||||
**Note 2**: Only `lightrag_openai_demo.py` and `lightrag_openai_compatible_demo.py` are officially supported sample codes. Other sample files are community contributions that haven't undergone full testing and optimization.
|
||||
|
||||
## Programing with LightRAG Core
|
||||
## Programming with LightRAG Core
|
||||
|
||||
> ⚠️ **If you would like to integrate LightRAG into your project, we recommend utilizing the REST API provided by the LightRAG Server**. LightRAG Core is typically intended for embedded applications or for researchers who wish to conduct studies and evaluations.
|
||||
|
||||
@@ -313,7 +313,7 @@ A full list of LightRAG init parameters:
|
||||
| **vector_db_storage_cls_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
||||
| **enable_llm_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
||||
| **enable_llm_cache_for_entity_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `TRUE` |
|
||||
| **addon_params** | `dict` | Additional parameters, e.g., `{"language": "Simplified Chinese", "entity_types": ["organization", "person", "location", "event"]}`: sets example limit, entiy/relation extraction output language | language: English` |
|
||||
| **addon_params** | `dict` | Additional parameters, e.g., `{"language": "Simplified Chinese", "entity_types": ["organization", "person", "location", "event"]}`: sets example limit, entity/relation extraction output language | language: English` |
|
||||
| **embedding_cache_config** | `dict` | Configuration for question-answer caching. Contains three parameters: `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers. `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM. `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||
|
||||
</details>
|
||||
@@ -364,7 +364,7 @@ class QueryParam:
|
||||
max_total_tokens: int = int(os.getenv("MAX_TOTAL_TOKENS", "30000"))
|
||||
"""Maximum total tokens budget for the entire query context (entities + relations + chunks + system prompt)."""
|
||||
|
||||
# History mesages is only send to LLM for context, not used for retrieval
|
||||
# History messages are only sent to LLM for context, not used for retrieval
|
||||
conversation_history: list[dict[str, str]] = field(default_factory=list)
|
||||
"""Stores past conversation history to maintain context.
|
||||
Format: [{"role": "user/assistant", "content": "message"}].
|
||||
@@ -1568,7 +1568,7 @@ Langfuse provides a drop-in replacement for the OpenAI client that automatically
|
||||
pip install lightrag-hku
|
||||
pip install lightrag-hku[observability]
|
||||
|
||||
# Or install from souce code with debug mode enabled
|
||||
# Or install from source code with debug mode enabled
|
||||
pip install -e .
|
||||
pip install -e ".[observability]"
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user