Merge pull request #2537 from vishvaRam/patch-1

Fixes the Gemini integration example in the README
This commit is contained in:
Daniel.y
2025-12-26 14:20:54 +08:00
committed by GitHub

View File

@@ -718,18 +718,18 @@ If you want to use Google Gemini models, you only need to set up LightRAG as fol
import os
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.gemini import gemini_complete, gemini_embed
from lightrag.llm.gemini import gemini_model_complete, gemini_embed
# Configure the generation model
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await gemini_complete(
return await gemini_model_complete(
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("GEMINI_API_KEY"),
model="gemini-1.5-flash",
model_name="gemini-2.0-flash",
**kwargs
)
@@ -749,6 +749,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
llm_model_name="gemini-2.0-flash",
embedding_func=embedding_func
)
```