Merge pull request #2537 from vishvaRam/patch-1
Fixes the Gemini integration example in the README
This commit is contained in:
@@ -718,18 +718,18 @@ If you want to use Google Gemini models, you only need to set up LightRAG as fol
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||||
from lightrag.llm.gemini import gemini_complete, gemini_embed
|
from lightrag.llm.gemini import gemini_model_complete, gemini_embed
|
||||||
|
|
||||||
# Configure the generation model
|
# Configure the generation model
|
||||||
async def llm_model_func(
|
async def llm_model_func(
|
||||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
return await gemini_complete(
|
return await gemini_model_complete(
|
||||||
prompt,
|
prompt,
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
history_messages=history_messages,
|
history_messages=history_messages,
|
||||||
api_key=os.getenv("GEMINI_API_KEY"),
|
api_key=os.getenv("GEMINI_API_KEY"),
|
||||||
model="gemini-1.5-flash",
|
model_name="gemini-2.0-flash",
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -749,6 +749,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
|||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=llm_model_func,
|
llm_model_func=llm_model_func,
|
||||||
|
llm_model_name="gemini-2.0-flash",
|
||||||
embedding_func=embedding_func
|
embedding_func=embedding_func
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|||||||
Reference in New Issue
Block a user